We present a novel approach for fabricating monodisperse phospholipid vesicles with high encapsulation efficiency using controlled double emulsions as templates. Glass-capillary microfluidics is used to generate monodisperse double emulsion templates. We show that the high uniformity in size and shape of the templates are maintained in the final phospholipid vesicles after a solvent removal step. Our simple and versatile technique is applicable to a wide range of phospholipids.
There is considerable interest in the binding and condensation of DNA with polycations to form polyplexes because of their possible application to cellular nucleic acid delivery. This work focuses on studying the binding of plasmid DNA (pDNA) with a series of poly(glycoamidoamine)s (PGAAs) that have previously been shown to deliver pDNA in vitro in an efficient and nontoxic manner. Herein, we examine the PGAA-pDNA binding energetics, binding-linked protonation, and electrostatic contribution to the free energy with isothermal titration calorimetry (ITC). The size and charge of the polyplexes at various ITC injection points were then investigated by light scattering and zeta-potential measurements to provide comprehensive insight into the formation of these polyplexes. An analysis of the calorimetric data revealed a three-step process consisting of two different endothermic contributions followed by the condensation/aggregation of polyplexes. The strength of binding and the point of charge neutralization were found to be dependent upon the hydroxyl stereochemistry of the carbohydrate moiety within each polymer repeat unit. Circular dichroism spectra reveal that the PGAAs induce pDNA secondary structure changes upon binding, which suggest a direct interaction between the polymers and the DNA base pairs. Infrared spectroscopy experiments confirmed both base pair and phosphate group interactions and, more specifically, showed that the stronger-binding PGAAs had more pronounced interactions at both sites. Thus, we conclude that the mechanism of poly(glycoamidoamine)-pDNA binding is most likely a combination of electrostatics and hydrogen bonding in which long-range Coulombic forces initiate the attraction and hydroxyl groups in the carbohydrate comonomer, depending on their stereochemistry, further enhance the association through hydrogen bonding to the DNA base pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.