Post-silicon validation has become essential in catching hard-todetect, rarely-occurring bugs that have slipped through pre-silicon verification. Post-silicon validation flows, however, are challenged by limited signal observability, which impacts their ability of diagnosing and detecting bugs. Indeed, bug manifestations during the execution of constrained-random tests may be masked and be unobservable from the test's outputs. The ability to evaluate the bug-masking rate of a test provides great value in generating and/or selecting effective tests for high coverage regressions. To this end, we propose an efficient, static bug-masking analysis solution, called BugMAPI. BugMAPI tracks the information flow in a test program, and it estimates the probability that bugs go undetected by the checking mechanisms in place in the post-silicon platform. To achieve this goal, we leverage static code analysis and a novel, lightweight, probability estimation algorithm. We evaluated BugMAPI on a range of industrial constrained-random tests and a range of bug injection models, and we found that it can estimate bugmasking rates with an accuracy of 77% in 3 orders-of-magnitude less time, compared to an ideal dynamic analysis solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.