An atlas of megadroughts in Europe and in the Mediterranean Basin during the Common Era provides insights into climate variability.
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.
Aim To identify temperatures at which cell division and differentiation are active in order to verify the existence of a common critical temperature determining growth in conifers of cold climates. Location Ten European and Canadian sites at different latitudes and altitudes. Methods The periods of cambial activity and cell differentiation were assessed on a weekly time-scale on histological sections of cambium and wood tissue collected over 2 to 5 years per site from 1998 to 2005 from the stems of seven conifer species. All data were compared with daily air temperatures recorded from weather stations located close to the sites. Logistic regressions were used to calculate the probability of xylogenesis and of cambium being active at a given temperature. Results Xylogenesis lasted from May to October, with a growing period varying from 3 to 5 months depending on location and elevation. Despite the wide geographical range of the monitored sites, temperatures for onset and ending of xylogenesis converged towards narrow ranges with average values around 4-5, 8-9 and 13-14 degrees C for daily minimum, mean and maximum temperature, respectively. On the contrary, cell division in the cambium stopped in July-August, when temperatures were still high. Main conclusions Wood formation in conifers occurred when specific critical temperatures were reached. Although the timing and duration of xylogenesis varied among species, sites and years, the estimated temperatures were stable for all trees studied. These results provide biologically based evidence that temperature is a critical factor limiting production and differentiation of xylem cells in cold climates. Although daily temperatures below 4-5 degrees C are still favourable for photosynthesis, thermal conditions below these values could inhibit the allocation of assimilated carbon to structural investment, i.e. xylem growth
Aim To evaluate the climate sensitivity of model-based forest productivity estimates using a continental-scale tree-ring network
The increasing carbon dioxide (CO 2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores.However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located Central Europe, a region where summer soil-water availability decreased over the last century.We were able to demonstrate that the combined effects of increasing CO 2 and climate change leading to soil drying have resulted in an accelerated increase of iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data. 4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.