Process mining aims at deriving process knowledge from event logs, which contain data recorded during process executions. Typically, event logs need to be generated from process execution data, stored in different kinds of information systems. In complex domains like healthcare, data is available only at different levels of granularity. Event abstraction techniques allow the transformation of events to a common level of granularity, which enables effective process mining. Existing event abstraction techniques do not sufficiently take into account domain knowledge and, as a result, fail to deliver suitable event logs in complex application domains.This paper presents an event abstraction method based on domain ontologies. We show that the method introduced generates semantically meaningful high-level events, suitable for process mining; it is evaluated on real-world patient treatment data of a large U.S. health system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.