BACKGROUND: Integration of data from multiple domains can greatly enhance the quality and applicability of knowledge generated in analysis workflows. However, working with health data is challenging, requiring careful preparation in order to support meaningful interpretation and robust results. Ontologies encapsulate relationships between variables that can enrich the semantic content of health datasets to enhance interpretability and inform downstream analyses. FINDINGS: We developed an R package for electronic Health Data preparation "eHDPrep", demonstrated upon a multimodal colorectal cancer dataset (n=661 patients, n=155 variables; Colo-661). eHDPrep offers user-friendly methods for quality control, including internal consistency checking and redundancy removal with information-theoretic variable merging. Semantic enrichment functionality is provided, enabling generation of new informative meta-variables according to ontological common ancestry between variables, demonstrated with SNOMED CT and the Gene Ontology in the current study. eHDPrep also facilitates numerical encoding, variable extraction from free-text, completeness analysis and user review of modifications to the dataset. CONCLUSION: eHDPrep provides effective tools to assess and enhance data quality, laying the foundation for robust performance and interpretability in downstream analyses. Application to a multi-modal colorectal cancer dataset resulted in improved data quality, structuring, and robust encoding, as well as enhanced semantic information. We make eHDPrep available as an R package from CRAN https://cran.r-project.org/package=eHDPrep.
Background Integration of data from multiple domains can greatly enhance the quality and applicability of knowledge generated in analysis workflows. However, working with health data is challenging, requiring careful preparation in order to support meaningful interpretation and robust results. Ontologies encapsulate relationships between variables that can enrich the semantic content of health datasets to enhance interpretability and inform downstream analyses. Findings We developed an R package for electronic health data preparation, “eHDPrep,” demonstrated upon a multimodal colorectal cancer dataset (661 patients, 155 variables; Colo-661); a further demonstrator is taken from The Cancer Genome Atlas (459 patients, 94 variables; TCGA-COAD). eHDPrep offers user-friendly methods for quality control, including internal consistency checking and redundancy removal with information-theoretic variable merging. Semantic enrichment functionality is provided, enabling generation of new informative “meta-variables” according to ontological common ancestry between variables, demonstrated with SNOMED CT and the Gene Ontology in the current study. eHDPrep also facilitates numerical encoding, variable extraction from free text, completeness analysis, and user review of modifications to the dataset. Conclusions eHDPrep provides effective tools to assess and enhance data quality, laying the foundation for robust performance and interpretability in downstream analyses. Application to multimodal colorectal cancer datasets resulted in improved data quality, structuring, and robust encoding, as well as enhanced semantic information. We make eHDPrep available as an R package from CRAN (https://cran.r-project.org/package = eHDPrep) and GitHub (https://github.com/overton-group/eHDPrep).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.