The effects of mixed v. mono-grazing by steers and sheep on individual animal growth rate, pasture carrying capacity and live-weight output per ha were measured in a 4-year (1978 to 1981) experiment, after a preliminary familiarization year, 1977. Annual stocking rate treatments consisted of three monosteer, three mono-sheep and seven mixtures of steers and sheep. Annual average stocking rates were 2·11 steers † 8·1 ewes per ha under mixed grazing and, under mono-grazing, 4·44 steers and 15·2 ewes per ha. The range from low to high in stocking rate in mono- or mixed grazing was close to 40%. Over the 4 years a total of about 280 steers, 900 ewes and 1100 lambs were used.Overall, mixed grazing increased average lamb daily live-weight gain (ADG) to weaning and to drafting from 246 to 265 g (P < 0001) and from 211 to 223 g (P < 0·001) respectively. Steer ADG for these periods was increased from 1·419 to 1·520 kg (P < 0·01) and from 0·950 to 1·094 kg (P < 0·001). The choice of reference mono-grazing stocking rates for comparisons of mixed v. mono-grazing ADG can affect these results. Average live-weight outputs (kg/ha) from grazing for the mono-steers, mono-sheep, and mixed grazing were 663, 690 and 714, the range in the latter over the seven mixed grazing treatments being from 605 to 805. Stocking rate was the main factor affecting output per ha. Because of the management rules used in this experiment mixed grazing effects are more appropriately assessed through ADG and measures based on it than on output per unit of area.Models were fitted relating steer and lamb ADG to lamb weaning and lamb and steer drafting to stocking rates of steers and ewes. Mixed grazing benefits to steer and lamb ADG to drafting were greater as their proportion in the mix declined and increased with stocking rate. At the 50% proportion, lamb and steer ADG were improved by 5·2 and 3·4% respectively at low stocking rate and 9·4 and 6·6 at high stocking rate. Predicted steer ADG to lamb weaning for a given steer stocking rate increased with increases in ewe proportion up to five ewes per ha and decreased rapidly with further increments in ewe proportion.Mixed grazing efficiency was also evaluated through the Relative Resource Total. This showed that under mono-grazing 10 to 13% more area was required to produce the same grazing season output as under mixed grazing. The 10% improvement in carrying capacity was exceeded for ewe: steer frequencies ranging from 1·5: 1 to 10: 1. Explanations for this greater efficiency in resource capture/use under mixed grazing are discussed.Substitution rates for lamb ADG to weaning (2·35) and to drafting (2·86) and for steer ADG to drafting (0·21) were fairly constant over the 4 years 1978 to 1981.Selection of mixed stocking rates to suit growth rate targets for different animal types and to match food supply with demand under varying soil/climatic/topographical conditions is discussed.
In attempting to increase the reliability of clover contribution in clover/ryegrass systems it is important to understand the roles of (1) specific traits of the clover genotype (2) climate and (3) their interactions in determining clover behaviour in swards. Overwintering and spring growth of white clover (cultivars AberHerald and Huia) grown in binary mixtures with perennial ryegrass were measured at 12 European sites ranging in latitude from Reykjavik, Iceland (64o30 ' N) to Pordenone, Italy (46°30 ' N). In the overwintering period, tiller density of the grass was assessed and detailed morphological and chemical measurements were made on the clover at each sampling time. During the growing season, the clover contribution to total available biomass was recorded. Detailed climatic data were available at all sites. The annual growth cycle of swards was divided into four functional periods (spring, summer, autumn and winter). Within each functional period community responses were modelled. The models incorporated independent biotic variables characterizing each community within each site at the start of the period and independent variables characterizing the climate at each site during the period. The models were linked dynamically by taking, as response variable(s) for a functional period, the independent biotic variable(s) of the succeeding period. In general, the modelling strategy was successful in producing a series of biologically meaningful linked models. Essential prerequisites for this were (a) the establishment of a well-devised common protocol prior to the experiment and (b) the extensive gradients of climatic and other variables obtained by using numerous sites. AberHerald generally performed as well as, or better than, Huia throughout the annual cycle across the range of climatic conditions encountered, and especially under low temperature conditions in winter and autumn. Clover leaf area index appeared to be a key variable in determining clover performance over winter and through the following growing season. Grass tiller density had a strong negative effect on clover content in spring but only at low temperatures. This emphasizes the importance of a high clover leaf area index in autumn as the main biotic factor related to spring clover content in milder conditions. The importance of climatic variables in the models is their use in explaining the reliability of the contribution of clover in clover/ryegrass systems. Temperature was the primary climatic determinant of clover response in all periods, having a direct effect on clover content and leaf area index or mediating the effect of the associate species. Radiation strongly influenced clover dynamics during winter and spring but not in the other periods, possibly because it was confounded with the effect of higher temperature. Precipitation was positively related to clover growth during spring and autumn and was related to tiller density in a complex manner during autumn and winter.
The effects of grazing regime (cattle, sheep and mixed cattle + sheep) on white clover content (clover dry matter as a percentage of total dry matter) were measured in a permanent pasture over a 7 year period in the west of Ireland (53°17'N 847'E). Rotational grazing was simulated by grazing for short intense periods of 3 4 d at 3 to 5 week intervals. In general, cattle grazing resulted in higher clover content (13-5 %) compared with mixed (9.5 %) or sheep (4-9 %) grazing. The ranking of clover contents (cattle > mixed > sheep) which developed rapidly in 1990 persisted until 1996. Clover contents under mixed grazing tracked those under cattle grazing during the first 4 years, and sheep grazing during the final 3 years. Within-year relativities in clover content among grazing regimes that existed at the start of the grazing season persisted throughout the year. There was an indication that differences in clover content between grazing regimes at the end of grazing persisted until the following spring. A regression analysis of clover content in each grazing period showed strong effects of grazing regime, generally positive relationships with mean air temperature in the period and clover content in the preceding period, and an interaction between air temperature and clover content in the previous period. Implications for pasture management and experimentation are discussed.
SUMMARYNew methods of design and analysis for mixed grazing experiments are proposed and compared with previously reported designs. In general, with previous designs the effects of mixed grazing per se were confounded with other factors. The concepts of equality of grazing pressure and of livestock equivalents are examined and criticized when used as starting points for mixed grazing experiments. Two year's results of a mixed grazing experiment with cattle and sheep are analysed and provide evidence that mixed grazing is beneficial to both species in terms of production per animal. A simple economic analysis shows how the price ratio between the value per unit weight gain of the two species can be used to decide on the area of financial benefit from mixed- as opposed to single-species enterprises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.