Fish are the most diverse group of vertebrates, fulfil important ecological functions and are of significant economic interest for aquaculture and wild fisheries. Advances in DNA extraction methods, sequencing technologies and bioinformatic applications have advanced genomic research for nonmodel organisms, allowing the field of fish ancient DNA (aDNA) to move into the genomics era. This move is enabling researchers to investigate a multitude of new questions in evolutionary ecology that could not, until now, be addressed. In many cases, these new fields of research have relevance to evolutionary applications, such as the sustainable management of fisheries resources and the conservation of aquatic animals. Here, we focus on the application of fish aDNA to (a) highlight new research questions, (b) outline methodological advances and current challenges, (c) discuss how our understanding of fish ecology and evolution can benefit from aDNA applications and (d) provide a future perspective on how the field will help answer key questions in conservation and management. We conclude that the power of fish aDNA will be unlocked through the application of continually improving genomic resources and methods to well‐chosen taxonomic groups represented by well‐dated archaeological samples that can provide temporally and/or spatially extensive data sets.
The Gulf of California, Mexico is home to many cetacean species, including a presumed resident population of fin whales,
Balaenoptera physalus
. Past studies reported very low levels of genetic diversity among Gulf of California fin whales and a significant level of genetic differentiation from con-specifics in the eastern North Pacific. The aim of the present study was to assess the degree and timing of the isolation of Gulf of California fin whales in a population genetic analysis of 18 nuclear microsatellite genotypes from 402 samples and 565 mitochondrial control region DNA sequences (including mitochondrial sequences retrieved from NCBI). The analyses revealed that the Gulf of California fin whale population was founded ~2.3 thousand years ago and has since remained at a low effective population size (~360) and isolated from the eastern North Pacific (
N
e
m
between 0.89–1.4). The low effective population size and high degree of isolation implied that Gulf of California fin whales are vulnerable to the negative effects of genetic drift, human-caused mortality and habitat change.
Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real‐time effects into their long‐term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene–Holocene transition (7–12 thousand years ago) provides an opportunity to gain insights into the long‐term responses of natural populations to periods with global warming. The effects of this post‐LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large‐scale climate fluctuations during the post‐LGM affected baleen whales and their prey, we conducted an extensive, large‐scale analysis of the long‐term effects of the post‐LGM warming on abundance and inter‐ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome‐wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post‐LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean‐wide expansions and decreases in abundance that were initiated by the post‐LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long‐lasting impacts of global warming on marine fauna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.