1. Understanding the impacts of extreme drought on forest productivity requires a comprehensive assessment of tree and forest resilience. However, current approaches to quantifying resilience limit our understanding of forest response dynamics, recovery trajectories and drought legacies by constraining the temporal scale and resolution of assessment.2. We compared individual tree growth histories with growth forecasted using dynamic regression at an annual resolution, allowing drought impact and individual tree and stand level recovery dynamics to be assessed relative to a scenario where no drought occurred. The novel application of this approach allowed us to quantify the cumulative impact of drought legacy on radial growth at multiple stem heights at different stand densities.3. We show that the choice of pre-and post-drought periods over which resilience is assessed can lead to systematic bias in both estimates and interpretations of resilience indices. In contrast, measuring growth resilience annually revealed clear nonlinearities in tree and stand recovery trajectories. Furthermore, we demonstrate that the influence of pre-drought attributes such as tree size, growth rates and stand densities on growth resilience were only detectable at certain stages of recovery. Importantly, we show that the legacy of drought on tree growth can become positive for some individuals, extending up to 9 years after the event such that post-recovery growth can result in the reclamation of some lost tree and stand basal area. Synthesis.We demonstrate the importance of increasing the temporal scale and resolution of forest resilience assessment in order to understand both patterns and drivers of drought recovery. We highlight the shortcomings of collapsing growth response into a single average value and show how drought legacy can persist into a post-recovery phase, even positively impacting the growth of some trees. If unaccounted for, this post-recovery growth phase can lead to an underestimation of resilience and an overestimation of above-ground losses in
Globally, large carnivores have been heavily affected by habitat loss, fragmentation and persecution, sometimes resulting in local extinctions. With increasing recognition of topdown trophic cascades and complex predator-prey dynamics, reintroductions are of growing interest for restoration of ecosystem functioning. Many reintroductions have however failed, in part due to poor planning and inability to model complex eco-evolutionary processes to give reliable predictions. Using the case study of Eurasian lynx (Lynx lynx), a large predator being considered for reintroduction to Scotland, we demonstrate how an individual-based model that integrates demography with three distinct phases of dispersal (emigration, transfer and settlement) can be used to explore the relative suitability of three geographically-distant potential reintroduction sites, multi-site reintroductions and two founding population sizes. For a single-site reintroduction of 10 lynx, our simulation results show a clear hierarchy of suitability across all metrics. Reintroduction in the Kintyre Peninsula (west coast) consistently performed best, with a probability of population persistence at year 100 of 83%, and the Scottish component of Kielder Forest (southern Scotland) worst, with only a 21% chance of population persistence to year 100. Simultaneous two-site reintroduction in the Kintyre Peninsula and in Aberdeenshire (near the east coast) of 32 lynx gave a 96% persistence at 100 years. Our model was highly sensitive to survival, particularly of adults, highlighting this parameter's importance for reintroduction success. The results strongly indicate the potential viability of Eurasian lynx reintroduction to Scotland given the current cover of suitable woodland habitat. More generally, our work demonstrates how emerging modelling approaches incorporating increased realism in representing species' demography, ecology and dispersal can have high value for quick, inexpensive assessment of likely reintroduction success and for selection between alternative strategies.
There is little evidence documenting the prevalence of plastic nest incorporation for different seabird species and populations, and even less detailing the source of such debris as nesting material. This study presents a baseline dataset on the presence of plastic in the nests of five seabird species on Lady Isle, Scotland using a novel and repeatable methodology for quantifying plastic incorporated into nests. Plastic was found in 24.5% to 80% of nests of all species. We analysed pellets of regurgitated material and the spatial distribution of herring gull nests containing plastic in the context of the tide and nesting habitat. Differences in the types of plastic found in pellets and nests suggests that plastic incorporated into herring gull nests was not derived at foraging sites and likely collected from the local environment. Targeted beach cleans before the breeding season could help minimise the quantity of plastic available to herring gulls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.