The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib.Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. Mol Cancer Ther; 14(5); 1213-23. Ó2015 AACR.
The CDH1 gene, encoding the cell adhesion protein E-cadherin, is one of the most frequently mutated genes in gastric cancer and inactivating germline CDH1 mutations are responsible for hereditary diffuse gastric cancer syndrome (HDGC). Using cell viability assays, we identified that breast (MCF10A) and gastric (NCI-N87) cells lacking CDH1 expression are more sensitive to allosteric AKT inhibitors than their CDH1-expressing isogenic counterparts. Apoptosis priming and total apoptosis assays in the isogenic MCF10A cells confirmed the enhanced sensitivity of E-cadherin-null cells to the AKT inhibitors. In addition, two of these inhibitors, ARQ-092 and MK2206, preferentially targeted mouse-derived gastric Cdh1−/− organoids for growth arrest. AKT protein expression and activation (as measured by phosphorylation of serine 473) were differentially regulated in E-cadherin-null MCF10A and NCI-N87 cells, with downregulation in the normal breast cells, but upregulation in the gastric cancer cells. Bioinformatic analysis of the TCGA STAD dataset revealed that AKT3, but not AKT1 or AKT2, is upregulated in the majority of E-cadherin-deficient gastric cancers. In conclusion, allosteric AKT inhibitors represent a promising class of drugs for chemoprevention and chemotherapy of cancers with E-cadherin loss.
Background The E-cadherin gene (CDH1) is frequently mutated in diffuse gastric cancer and lobular breast cancer, and germline mutations predispose to the cancer syndrome Hereditary Diffuse Gastric Cancer. We are taking a synthetic lethal approach to identify druggable vulnerabilities in CDH1-mutant cancers. Methods Density distributions of cell viability data from a genome-wide RNAi screen of isogenic MCF10A and MCF10A-CDH1 −/− cells were used to identify protein classes affected by CDH1 mutation. The synthetic lethal relationship between selected protein classes and E-cadherin was characterised by drug sensitivity assays in both the isogenic breast MCF10A cells and CDH1-isogenic gastric NCI-N87. Endocytosis efficiency was quantified using cholera toxin B uptake. Pathway metagene expression of 415 TCGA gastric tumours was statistically correlated with CDH1 expression. Results MCF10A-CDH1 −/− cells showed significantly altered sensitivity to RNAi inhibition of groups of genes including the PI3K/AKT pathway, GPCRs, ion channels, proteosomal subunit proteins and ubiquitinylation enzymes. Both MCF10A-CDH1 −/− and NCI-N87-CDH1 −/− cells were more sensitive than wild-type cells to compounds that disrupted plasma membrane composition and trafficking, but showed contrasting sensitivities to inhibitors of actin polymerisation and the chloride channel inhibitor NS3728. The MCF10A-CDH1 −/− cell lines showed reduced capacity to endocytose cholera toxin B. Pathway metagene analysis identified 20 Reactome pathways that were potentially synthetic lethal in tumours. Genes involved in GPCR signalling, vesicle transport and the metabolism of PI3K and membrane lipids were strongly represented amongst the candidate synthetic lethal genes. Conclusions E-cadherin loss leads to disturbances in receptor signalling and plasma membrane trafficking and organisation, creating druggable vulnerabilities.
Hereditary diffuse gastric cancer (HDGC) is a cancer syndrome caused by germline variants in CDH1, the gene encoding the cell–cell adhesion molecule E‐cadherin. Loss of E‐cadherin in cancer is associated with cellular dedifferentiation and poor prognosis, but the mechanisms through which CDH1 loss initiates HDGC are not known. Using single‐cell RNA sequencing, we explored the transcriptional landscape of a murine organoid model of HDGC to characterize the impact of CDH1 loss in early tumourigenesis. Progenitor populations of stratified squamous and simple columnar epithelium, characteristic of the mouse stomach, showed lineage‐specific transcriptional programs. Cdh1 inactivation resulted in shifts along the squamous differentiation trajectory associated with aberrant expression of genes central to gastrointestinal epithelial differentiation. Cytokeratin 7 (CK7), encoded by the differentiation‐dependent gene Krt7, was a specific marker for early neoplastic lesions in CDH1 carriers. Our findings suggest that deregulation of developmental transcriptional programs may precede malignancy in HDGC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.