This paper describes a novel tool called Nimrod/O that allows a user to run an arbitrary computational model as the core of a non-linear optimization process. Nimrod/O allows a user to specify the domain and type of parameters to the model, and also a specification of which output variable is to be minimized or maximized. Accordingly, a user can formulate a question like: "what parameter settings will minimize the model output?". Nimrod/O currently employs a number of built-in optimization algorithms, namely BFGS, Simplex, Divide and Conquer and Simulated Annealing. Jobs can be executed on a variety of platforms, including distributed clusters and Computational Grid resources. The paper demonstrates the utility of the system with a number of case studies.
In this paper we describe the Nimrod/O design optimization tool, and its application in computational fluid dynamics. Nimrod/O facilitates the use of an arbitrary computational model to drive an automatic optimization process. This means that the user can parameterise an arbitrary problem, and then ask the tool to compute the parameter values that minimize or maximise a design objective function. The paper describes the Nimrod/O system, and then discusses a case study in the evaluation of an aerofoil problem. The problem involves computing the shape and angle of attack of the aerofoil that maximises the lift to drag ratio. The results show that our general approach is extremely flexible and delivers better results than a program that was developed specifically for the problem. Moreover, it only took us a few hours to set up the tool for the new problem and required no software development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.