This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 µm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix
The present study reports on the erosion properties of a novel surface engineering process combining cold spray and friction stir processing. Tungsten carbide (WC-CoCr) and aluminium oxide (Al2O3) powders were cold spray co-deposited with AISI316 using a twin powder feed system. The deposited coatings were subsequently friction stir processed to refine and redistribute the reinforcing particles and remove the coating-to-substrate interface layer, thus generating a new metal matrix composite surface. Microstructural analysis of the SprayStirred (cold sprayed then friction stirred) specimens revealed significant particle refinement and improved particle distribution over the as-deposited coatings. The erosion performance of these SprayStirred surfaces was evaluated using a flowing slurry and demonstrated an 80% decrease in volume loss over the as-received AISI316 at 30° angle of attack. For SprayStirred WC-CoCr, microhardness measurements indicated an increase of approx. 530% over the unaltered AISI316 and 100% over the cold sprayed coating. These findings highlight the considerable increase in erosion performance of the SprayStirred specimens, and thus demonstrate the benefits of this innovative surface engineering process. This outcome is attributed to dispersion strengthening, imparted by the refined tungsten carbides. Furthermore, the SprayStirred WC-CoCr coating exhibited an 85% reduction in volume loss over an HVOF sprayed WC-CoCr coating
The present work reports on the examination of three High Velocity Oxy Fuel deposited coatings, Tungsten Carbide, Chromium Carbide and Aluminium Oxide, under slurry erosion and dry erosion conditions. The density and hardness of coatings produced in this manner are typically superior to other thermal spray processes, and are therefore suitable for use in corrosive and highly erosive environments. The primary aim of this investigation was to establish the total mass and volume loss from each coating under dry and slurry erosion testing conditions and compare the level of material loss following the respective testing regimes. The scope of the study incorporated the application of cathodic protection to prohibit the effects of corrosion in the case of slurry erosion testing. This approach ensured that any damage to the surface could be attributed to pure erosion, and as such, be assessed against the dry erosion test data. Subsequent examination of the resulting wear scars facilitated assessment of the level of damage caused by the impinging slurry. Results revealed variation in the level of degradation experienced by each coating type under the respective test conditions. Under both dry erosion and slurry erosion, Tungsten Carbide with a Cobalt binder proved an effective protective coating by exhibiting a reduction in material loss over other assessed coatings
This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 µm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry
A Ab bs st tr ra ac ct tThe present study examines three High Velocity Oxy Fuel deposited coatings, Tungsten Carbide, Chromium Carbide and Aluminium Oxide, under slurry erosion-corrosion conditions. Coatings produced in this manner typically exhibit superior density and hardness over alternative thermal spray technologies, therefore are suitable for use in corrosive and highly erosive environments. The scope of the study concentrates on isolation of the contributing factors of erosion, corrosion and synergy through applied electrochemistry, as well as metallographic analysis to evaluate the mechanisms causing coating degradation. Carbide with a Cobalt binder to be an effective protective coating, resulting in a significant reduction in total material loss over uncoated S355 steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.