A complete understanding of the molecular mechanisms involved in the formation and repair of the central nervous system myelin sheath requires an unambiguous identification and isolation of in vivo-differentiated myelin-forming cells. In order to develop a novel tool for the analysis of in vivo-differentiated oligodendrocytes, we generated transgenic mice expressing a red-shifted variant of the green fluorescent protein under the control of the proteolipid protein promoter. We demonstrate here that green fluorescent protein-derived fluorescence in the central nervous system of 9-day- to 7-week-old mice is restricted to mature oligodendrocytes, as determined by its spatiotemporal appearance and by both immunocytochemical and electrophysiological criteria. Green fluorescent protein-positive oligodendrocytes could easily be visualized in live and fixed tissue. Furthermore, we show that this convenient and reliable identification now allows detailed physiological analyses of differentiated oligodendrocytes in situ. In addition, we developed a novel tissue culture system for in vivo-differentiated oligodendrocytes. Initial data using this system indicate that, for oligodendrocytes isolated after differentiation in vivo, as yet unidentified factors secreted by astrocytes are necessary for survival and/or reappearance of a mature phenotype in culture.
One of the more complex developmental processes occurring postnatally in the CNS is the formation of the myelin sheath by oligodendrocytes. To examine the molecular events that take place during myelination, we isolated oligodendrocyte-derived cDNA clones, one of which (p421.HB) represents a putative alternatively spliced isoform of rat brain-specific phosphodiesterase I (PD-Ialpha) and a species homolog of the human cytokine autotaxin. Analysis of the structural composition of the p421.HB/PD-Ialpha protein suggests a transmembrane-bound ectoenzyme, which, in addition to the phosphodiesterase-active site contains presumed cell recognition and Ca2+-binding domains. Consequently, it may be involved in extracellular signaling events. Expression of p421.HB/PD-Ialpha is enriched in brain and spinal cord, where its mRNA can be detected in oligodendrocytes and in cells of the choroid plexus. Expression in the brain increases during development with an intermediate peak of expression around the time of active myelination and maximal expression in the adult. We have identified four presumably alternatively spliced isoforms, two of which appear to be CNS-specific. Decreased levels of p421.HB/PD-Ialpha mRNA in the dysmyelinating mouse mutant jimpy, but not shiverer, suggest a role for p421.HB/PD-Ialpha during active myelination and/or late stages of oligodendrocyte differentiation. Furthermore, p421.HB/PD-Ialpha mRNA levels were reduced in the CNS at onset of clinical symptoms in experimental autoimmune encephalomyelitis. These data together implicate the importance of p421.HB/PD-Ialpha in oligodendrocyte function, possibly through cell-cell and/or cell-extracellular matrix recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.