In this paper, we advocate the use of setwise contests for aggregating a set of input rankings into an output ranking. We propose a generalization of the Kemeny rule where one minimizes the number of k-wise disagreements instead of pairwise disagreements (one counts 1 disagreement each time the top choice in a subset of alternatives of cardinality at most k differs between an input ranking and the output ranking). After an algorithmic study of this k-wise Kemeny aggregation problem, we introduce a k-wise counterpart of the majority graph. It reveals useful to divide the aggregation problem into several sub-problems. We conclude with numerical tests.
In this paper we introduce a proactive-reactive approach to deal with uncertain scheduling problems. The method constructs a robust decision tree for a decision maker that is reusable as long as the problem parameters remain in the uncertainty set. At each node of the tree we assume that the scheduler has access to some knowledge about the ongoing scenario, reducing the level of uncertainty and allowing the computation of less conservative solutions with robustness guarantees. However, obtaining information on the uncertain parameters can be costly and frequent rescheduling can be disturbing. We first formally define the robust decision tree and the information refining concepts in the context of uncertainty scenarios. Then we propose algorithms to build such a tree. Finally, focusing on a simple single machine scheduling problem, we provide experimental comparisons highlighting the potential of the decision tree approach compared with reactive algorithms for obtaining more robust solutions with fewer information updates and schedule changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.