Staff assignment is a compelling exercise that affects most companies and organizations in the service industries. Here, we introduce a new real-world staff assignment problem that was reported to us by a Swiss provider of commercial employee scheduling software. The problem consists of assigning employees to work shifts subject to a large variety of critical and noncritical requests, including employees' personal preferences. Each request has a target value, and deviations from the target value are associated with integer acceptance levels. These acceptance levels reflect the relative severity of possible deviations, e.g., for the request of an employee to have at least two weekends off, having one weekend off is preferable to having no weekend off and thus receives a higher acceptance level. The objective is to minimize the total number of deviations in lexicographical order of the acceptance levels. Staff assignment approaches from the literature are not applicable to this problem. We provide a binary linear programming formulation and propose a matheuristic for large-scale instances. The matheuristic employs effective strategies to determine the subproblems and focuses on finding good feasible solutions to the subproblems rather than proving their optimality. Our computational analysis based on real-world data shows that the matheuristic scales well and outperforms commercial employee scheduling software.
In the literature, various discrete-time and continuous-time mixedinteger linear programming (MIP) formulations for project scheduling problems have been proposed. The performance of these formulations has been analyzed based on generic test instances. The objective of this study is to analyze the performance of discrete-time and continuous-time MIP formulations for a real-life application of project scheduling in human resource management. We consider the problem of scheduling assessment centers. In an assessment center, candidates for job positions perform different tasks while being observed and evaluated by assessors. Because these assessors are highly qualified and expensive personnel, the duration of the assessment center should be minimized. Complex rules for assigning assessors to candidates distinguish this problem from other scheduling problems discussed in the literature. We develop two discrete-time and three continuous-time MIP formulations, and we present problem-specific lower bounds. In a comparative study, we analyze the performance of the five MIP formulations on four real-life instances and a set of 240 instances derived from real-life data. The results indicate that good or optimal solutions are obtained for all instances within short computational time. In particular, one of the real-life instances is solved to optimality. Surprisingly, the continuous-time formulations outperform the discrete-time formulations in terms of solution quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.