Motivation: Primary data analysis methods are of critical importance in second generation DNA sequencing. Improved methods have the potential to increase yield and reduce the error rates. Openly documented analysis tools enable the user to understand the primary data, this is important for the optimization and validity of their scientific work.Results: In this article, we describe Swift, a new tool for performing primary data analysis on the Illumina Solexa Sequencing Platform. Swift is the first tool, outside of the vendors own software, which completes the full analysis process, from raw images through to base calls. As such it provides an alternative to, and independent validation of, the vendor supplied tool. Our results show that Swift is able to increase yield by 13.8%, at comparable error rate.Availability and Implementation: Swift is implemented in C++and supported under Linux. It is supplied under an open source license (LGPL3), allowing researchers to build upon the platform. Swift is available from http://swiftng.sourceforge.net.Contact: new@sgenomics.org; nava.whiteford@nanoporetech.comSupplementary information: Supplementary data are available at Bioinformatics online.
The new generation of short-read sequencing technologies requires reliable measures of data quality. Such measures are especially important for variant calling. However, in the particular case of SNP calling, a great number of false-positive SNPs may be obtained. One needs to distinguish putative SNPs from sequencing or other errors. We found that not only the probability of sequencing errors (i.e. the quality value) is important to distinguish an FP-SNP but also the conditional probability of \correcting" this error (the \second best call" probability, conditional on that of the first call). Surprisingly, around 80% of mismatches can be \corrected" with this second call. Another way to reduce the rate of FP-SNPs is to retrieve DNA motifs that seem to be prone to sequencing errors, and to attach a corresponding conditional quality value to these motifs. We have developed several measures to distinguish between sequence errors and candidate SNPs, based on a base call's nucleotide context and its mismatch type. In addition, we suggested a simple method to correct the majority of mismatches, based on conditional probability of their \second" best intensity call. We attach a corresponding second call confidence (quality value) of being corrected to each mismatch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.