Background. Sleep is important for consolidation of motor learning, but brain injury may affect sleep continuity and therefore rehabilitation outcomes. Objective. This study aims to assess the relationship between sleep quality and motor recovery in brain injury patients receiving inpatient rehabilitation. Methods. Fifty-nine patients with brain injury were recruited from 2 specialist inpatient rehabilitation units. Sleep quality was assessed (up to 3 times) objectively using actigraphy (7 nights) and subjectively using the Sleep Condition Indicator. Motor outcome assessments included Action Research Arm test (upper limb function), Fugl-Meyer Assessment (motor impairment), and the Rivermead Mobility Index. The Functional Independence Measure (FIM) was assessed at admission and discharge by the clinical team. Fifty-five age- and gender-matched healthy controls completed one assessment. Results. Inpatients demonstrated lower self-reported sleep quality ( P < .001) and more fragmented sleep ( P < .001) than controls. For inpatients, sleep fragmentation explained significant additional variance in motor outcomes, over and above that explained by admission FIM score ( P < .017), such that more disrupted sleep was associated with poorer motor outcomes. Using stepwise linear regression, sleep fragmentation was the only variable found to explain variance in rate of change in FIM ( R2adj = 0.12, P = .027), whereby more disrupted sleep was associated with slower recovery. Conclusions. Inpatients with brain injury demonstrate impaired sleep quality, and this is associated with poorer motor outcomes and slower functional recovery. Further investigation is needed to determine how sleep quality can be improved and whether this affects outcome.
Background. Stroke survivors commonly complain of difficulty sleeping. Poor sleep is associated with reduced quality of life and more understanding of long-term consequences of stroke on sleep is needed. Objective. The primary aims were to (1) compare sleep measures between chronic stroke survivors and healthy controls and (2) test for a relationship between motor impairment, time since stroke and sleep. Secondary aims were to explore mood and inactivity as potential correlates of sleep and test the correlation between self-reported and objective sleep measures. Methods. Cross-sectional sleep measures were obtained for 69 chronic stroke survivors (mean 65 months post-stroke, 63 years old, 24 female) and 63 healthy controls (mean 61 years old, 27 female). Self-reported sleep was assessed with the sleep condition indicator (SCI) and sleep diary ratings, objective sleep with 7-nights actigraphy and mood with the Hospital Anxiety and Depression Scale. Upper extremity motor impairment was assessed with the Fugl-Meyer assessment. Results. Stroke survivors had significantly poorer SCI score ( P < .001) and higher wake after sleep onset ( P = .005) than controls. Neither motor impairment, nor time since stroke, explained significant variance in sleep measures for the stroke group. For all participants together, greater depression was associated with poorer SCI score ( R2adj = .197, P < .001) and higher age with more fragmented sleep ( R2adj = .108, P < .001). There were weak correlations between nightly sleep ratings and actigraphy sleep measures ( r s = .15–.24). Conclusions. Sleep disturbance is present long-term after stroke. Depressive symptoms may present a modifiable factor which should be investigated alongside techniques to improve sleep in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.