Objectives: The aims of this study were (1) to quantify and compare the load of a professional football team's training days and matches and (2) to compare training of nonstarters the day after the match with regular training of starters and nonstarters. Methods: On-field training load during in-season training days (categorized as days before match day, i.e., MD minus) and 3 friendly matches were recorded using alocal positioning measurement system. Results: Mixed linear models showed lower load when training approached match day. Relative to match values (100%), training values for running (52 -20%; MD-4 -MD-1) and high-speed running (38 -15%) were lower than for total distance (67 -35%), and all considerably lower than match values. On average, medium and high accelerations and decelerations during training were more similar to match values (90 -39%). Load during nonstarters training was lower than during regular training for almost all variables on MD-4 and several high-intensity variables on MD-3 and MD-2. Conclusions: The results highlight that acceleration and deceleration measures complement more commonly used external load variables based on distance and speed. Furthermore, nonstarters are potentially under-loaded compared to starters, especially in terms of (high-speed) running.
Purpose: A local position measurement (LPM) system can accurately track the distance covered and the average speed of whole body movements. However, for the quantification of a soccer player's workload, accelerations rather than positions or speeds are essential. The main purpose of the current study was therefore to determine the accuracy of LPM in measuring average and peak accelerations for a broad range of (maximal) soccerspecific movements. Methods: Twelve male amateur soccer players performed 8 movements (categorized in straight runs and runs involving a sudden change in direction of 90° or 180°) at 3 intensities (jog, submaximal, maximal). Position-related parameters recorded with LPM were compared with Vicon motionanalysis data sampled at 100 Hz. The differences between LPM and VICON data were expressed as percentage of the Vicon data. Results: LPM provided reasonably accurate measurements for distance, average speed and peak speed (differences within 2% across all movements and intensities). For average acceleration and deceleration absolute bias and 95% limits of agreement were 0.01 ± 0.36 m/s 2 and 0.02 ± 0.38 m/s 2 , respectively. On average, peak acceleration was overestimated (0.48 ± 1.27 m/s 2 ) by LPM, while peak deceleration was underestimated (0.32 ± 1.17 m/s 2 ). Conclusion: LPM accuracy appears acceptable for most measurements of average acceleration and deceleration, but for peak acceleration and deceleration accuracy is limited. However, when these error margins are kept in mind, the system may be used in practice for quantifying average accelerations and parameters such as summed accelerations or time spent in acceleration zones.
Shuttle running raised the player's energy cost of running compared to constant running at the same average speed. Although actual energy cost of constant running was significantly overestimated by di Prampero's approach using LPM data as input, actual energy cost of shuttle running was significantly underestimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.