To study the role of protosellar jets and outflows in the time evolution of the parent cores and the protostars, the astronomical community needs a large enough data base of infrared images of protostars at the highest spatial resolution possible, to reveal the details of their morphology. Spitzer provides unprecedented sensitivity in the infrared to study both the jet and outflow features, however its spatial resolution is limited by its 0.85m mirror. Here we use a high resolution deconvolution algorithm, "HiRes", to improve the visualization of spatial morphology by enhancing resolution (to sub-arcsecond levels in the IRAC bands) and removing the contaminating sidelobes from bright sources in a sample of 89 protostellar objects. These reprocessed images are useful to detect: (i) wide angle outflow seen in scattered light; (ii) morphological details of H 2 emission in jets and bow shocks; and (iii) compact features in MIPS 24 µm images as protostar/disk and atomic/ionic line emissions associated with the jets. The HiRes fits image data of such a large homogeneous sample presented here will be useful to the community in studying these protostellar objects. To illustrate the utility of this HiRes sample, we show how the opening angle of the wide angle outflows in 31 sources, all observed in the HiRes processed Spitzer images, correlates with age. Our data suggest a power law fit to opening angle versus age with an exponent of ∼ 0.32 and 0.02, respectively for ages ≤ 8000 yr and ≥ 8000 yr.
Objective:To determine whether gluteus medius (GM) activity increases in response to isometric closed-chain external hip rotation.Design:Subjects performed single-leg stances in 3 different conditions: 0° knee flexion, 0° hip flexion (C1); 0° knee flexion, 20° hip flexion (C2); and knee flexed 20–30°, 20° hip flexion (C3). Posteriorly directed forces of 8.9 N (F1), 17.8 N (F2), and 26.7 N (F3) were applied at the lateral pelvis of the nonstance side during each condition.Subjects:20 college students.Measurements:Surface EMG RMS amplitude from the GM and kinematic data from the trunk, hip, and knee.Results:Statistical analyses revealed a significant Condition 3 Force interaction and significant increases of EMG activity from C1F1 and C1F2 to C1F3 and from C3F1 to C3F2 and C3F3. F2 and F3 of C2 were significantly less than F2 and F3 of both C1 and C3.Conclusions:GM activity increases in response to isometric, closed-chain, external hip-rotation forces, and forward movement of the upper body with respect to the base of support decreases GM activity.
We present Spitzer Space Telescope early release observations of Fomalhaut, a nearby A-type star with dusty circumstellar debris. The disk is spatially resolved at 24, 70, and 160 m using the Multiband Imaging Photometer for Spitzer (MIPS). While the disk orientation and outer radius are comparable to values measured in the submillimeter, the disk inner radius cannot be precisely defined: the central hole in the submillimeter ring is at least partially filled with emission from warm dust, seen in Spitzer Infrared Spectrograph (IRS) 17.5-34 m spectra and MIPS 24 m images. The disk surface brightness becomes increasingly asymmetric toward shorter wavelengths, with the south-southeast ansa always brighter than the north-northwest one. This asymmetry may reflect perturbations on the disk by an unseen interior planet.
Results of a study comparing long‐term time variations (years) in Jupiter's synchrotron radio emission with a variety of solar wind parameters and the 10.7‐cm solar flux are reported. Data from 1963 through 1985 were analyzed, and the results suggest that many solar wind parameters are correlated with the intensity of the synchrotron emission produced by the relativistic electrons in the Jovian Van Allen radiation belts. Significant nonzero correlation coefficients appear to be associated with solar wind ion density, ram pressure, thermal pressure, flow velocity, momentum, and ion temperature. The highest correlation coefficients are obtained for solar wind ram pressure (NV²) and thermal pressure (NT). The correlation analysis suggests that the delay time between fluctuations in the solar wind and changes in the Jovian synchrotron emission is typically about 2 years. The delay time of the correlation places important constraints on the theoretical models describing the radiation belts. The implication of these results, if the correlations are real, is that the solar wind is influencing the supply and/or loss of electrons to Jupiter's inner magnetosphere. We note that the data for this work spans only about two periods of the solar activity cycle, and because of the long time scales of the observed variations, it is important to confirm these results with additional observations.
Spitzer provides unprecedented sensitivity in the infrared (IR), but the spatial resolution is limited by a relatively small aperture (0.85 m) of the primary mirror. In order to maximize the scientific return it is desirable to use processing techniques which make the optimal use of the spatial information in the observations. We have developed a deconvolution technique for Spitzer images. The algorithm, "HiRes" and its implementation has been discussed by Backus et al. in 2005. Here we present examples of Spitzer IR images from the Infrared Array Camera (IRAC) and MIPS, reprocessed using this technique. Examples of HiRes processing include a variety of objects from point sources to complex extended regions. The examples include comparison of Spitzer deconvolved images with high-resolution Keck and Hubble Space Telescope images. HiRes deconvolution improves the visualization of spatial morphology by enhancing resolution (to sub-arcsecond levels in the IRAC bands) and removing the contaminating sidelobes from bright sources. The results thereby represent a significant improvement over previously-published Spitzer images. The benefits of HiRes include (a) subarcsec resolution (∼0 .6-0 .8 for IRAC channels); (b) the ability to detect sources below the diffraction-limited confusion level; (c) the ability to separate blended sources, and thereby provide guidance to point-source extraction procedures; (d) an improved ability to show the spatial morphology of resolved sources. We suggest that it is a useful technique to identify features which are interesting enough for follow-up deeper analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.