Radiology has a recognised role in undergraduate anatomy education. The recent digitalisation of radiology has created new learning opportunities involving techniques such as image labelling, 3D reconstruction, and multiplanar reformatting. An opportunity was identified at the University of Nottingham to create a digital library of normal radiology images as a learner-driven adjunct in anatomy dissection sessions. We describe the process of creating a de novo digital library by sourcing images for presentation at computer workstations. Students' attitudes towards this new resource were assessed using a questionnaire which used a 5 point Likert scale and also offered free text responses. One hundred and forty-one out of 260 students (54%) completed the questionnaire. The most notable findings were: a positive response to the relevance of imaging to the session topics (median score 4), strong agreement that images should be available on the university website (median score 5), and disagreement that enough workstations were available (median score 2). About 24% of respondents suggested independently that images needed more labeling to help with orientation and identification. This first phase of supplying a comprehensive imaging library can be regarded as a success. Increasing availability and incorporating dynamic labeling are well recognized as important design concepts for electronic learning resources and these will be improved in the second phase of delivery as a direct result of student feedback. Hopefully other centers can benefit from this experience and will consider such a venture to be worthwhile.
CT grading of hip osteoarthritis (categorised as none, developing and established) has substantial reliability. Sensitivity was increased when CT features of osteoarthritis were assigned a composite score (0 = none to 7 = severest) that also performed well as a diagnostic test, but at the cost of reliability. Having established feasibility and reliability for this new CT system, sensitivity testing and validation against clinical measures of hip osteoarthritis will now be performed.
Hip fractures are the most serious of all fragility fractures in older people of both sexes. Trips, stumbles, and falls result in fractures of the femoral neck or trochanter, and the incidence of these two common fractures is increasing worldwide as populations age. Although clinical risk factors and chance are important in causation, the ability of a femur to resist fracture also depends on the size and spatial distribution of the bone, its intrinsic material properties, and the loads applied. Over the past two decades, clinical quantitative computed tomography (QCT) studies of living volunteers have provided insight into how the femur changes with advancing age to leave older men and women at increased risk of hip fractures. In this review, we focus on patterns of cortical bone loss associated with hip fracture, age-related changes in cortical bone, and the effects of drugs used to treat osteoporosis. There are several methodologies available to measure cortical bone in vivo using QCT. Most techniques quantify bone density (g/cm(3)), mass (g), and thickness (mm) in selected, predefined or “traditional” regions of interest such as the “femoral neck” or “total hip” region. A recent alternative approach termed “computational anatomy,” uses parametric methods to identify systematic differences, before displaying statistically significant regions as color-scaled maps of density, mass, or thickness on or within a representative femur model. This review will highlight discoveries made using both traditional and computational anatomy methods, focusing on cortical bone of the proximal femur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.