Global quantum networks for secure communication can be realized using large fleets of satellites distributing entangled photon pairs between ground-based nodes. Because the cost of a satellite depends on its size, the smallest satellites will be most cost-effective. This Letter describes a miniaturized, polarization entangled, photon-pair source operating on board a nano-satellite. The source violates Bell’s inequality with a Clauser–Horne–Shimony–Holt parameter of 2.60 ± 0.06 . This source can be combined with optical link technologies to enable future quantum communication nano-satellite missions.
Quantum key distribution from satellites becomes particularly valuable when it can be used on a large network and on-demand to provide a symmetric encryption key to any two nodes. A constellation model is described which enables QKD-derived encryption keys to be established between any two ground stations with low latency. This is achieved through the use of low earth orbit, trusted-node QKD satellites which create a buffer of keys with the ground stations they pass over, and geostationary relay satellites to transfer secure combinations of the keys to the ground stations. Regional and global network models are considered and the use of intersatellite QKD links for balancing keys is assessed.
An application of quantum communications is the transmission of qubits to create shared symmetric encryption keys in a process called Quantum Key Distribution (QKD). Contrary to publicprivate key encryption, symmetric encryption is safe from (quantum) computing attacks, i.e. it provides forward security and is thus attractive for secure communications. In this paper we argue that for free-space quantum communications, especially with satellites, if one assumes that man-inthe-middle attacks can be detected by classical channel monitoring techniques, simplified quantum communications protocols and hardware systems can be implemented that offer improved key rates. We term these protocols photon key distribution (PKD) to differentiate them from the standard QKD protocols. We identify three types of photon sources and calculate asymptotic secret key rates for PKD protocols and compare them to their QKD counterparts. Results show that PKD protocols have roughly a factor of two higher rates as only one measurement basis is used and due to the relaxed security assumptions can establish keys at very high losses whereas in QKD the privacy amplification process becomes prohibitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.