Air pollutant levels positively correlate with increases in both acute and chronic cardiovascular disease. The pollutant diesel exhaust (DE) increases endothelin (ET) levels, suggesting that this peptide may contribute to DE-induced cardiovascular disease. We hypothesized that acute exposure to DE also enhances ET-1-mediated coronary artery constrictor sensitivity. Constrictor responses to KCl, U-46619, and ET-1 were recorded by videomicroscopy in pressurized intraseptal coronary arteries from rats exposed for 5 h to DE (300 microg/m(3)) or filtered air (Air). ET-1 constriction was augmented in arteries from DE-exposed rats. Nitric oxide synthase (NOS) inhibition [N(omega)-nitro-L-arginine (L-NNA), 100 microM] and endothelium inactivation augmented ET-1 responses in arteries from Air but not DE rats so that after either treatment responses were not different between groups. DE exposure did not affect KCl and U-46619 constrictor responses, while NOS inhibition augmented KCl constriction equally in both groups. Thus basal NOS activity does not appear to be affected by DE exposure. The endothelin type B (ET(B)) receptor antagonist BQ-788 (10 microM) inhibited ET-1 constriction in DE but not Air arteries, and constriction in the presence of the antagonist was not different between groups. Cytokine levels were not different in plasma from DE and AIR rats, suggesting that acute exposure to DE does not cause an immediate inflammatory response. In summary, a 5-h DE exposure selectively increases constrictor sensitivity to ET-1. This augmentation is endothelium-, NOS-, and ET(B) receptor dependent. These data suggest that DE exposure diminishes ET(B) receptor activation of endothelial NOS and augments ET(B)-dependent vasoconstriction. This augmented coronary vasoreactivity to ET-1 after DE, coupled with previous reports that DE induces production of ET-1, suggests that ET-1 may contribute to the increased incidence of cardiac events during acute increases in air pollution levels.
Background and objectiveIncreased air pollutants correlate with increased incidence of cardiovascular disease potentially due to vascular dysfunction. We have reported that acute diesel engine exhaust (DE) exposure enhances vasoconstriction and diminishes acetylcholine (ACh)-induced dilation in coronary arteries in a nitric oxide synthase (NOS)-dependent manner. We hypothesize that acute DE inhalation leads to endothelial dysfunction by uncoupling NOS.MethodsRats inhaled fresh DE (300 μg particulate matter/m3) or filtered air for 5 hr. After off-gassing, intraseptal coronary arteries were isolated and dilation to ACh recorded using videomicroscopy.ResultsArteries from DE-exposed animals dilated less to ACh than arteries from air-exposed animals. NOS inhibition did not affect ACh dilation in control arteries but increased dilation in the DE group, suggesting NOS does not normally contribute to ACh-induced dilation in coronary arteries but does contribute to endothelial dysfunction after DE inhalation. Cyclooxygenase (COX) inhibition did not affect ACh dilation in the DE group, but combined inhibition of NOS and COX diminished dilation in both groups and eliminated intergroup differences, suggesting that the two pathways interact. Superoxide scavenging increased ACh dilation in DE arteries, eliminating differences between groups. Tetrahydrobiopterin (BH4) supplementation with sepiapterin restored ACh-mediated dilation in the DE group in a NOS-dependent manner. Superoxide generation (dihydroethidium staining) was greater in DE arteries, and superoxide scavenging, BH4 supplementation, or NOS inhibition reduced the signal in DE but not air arteries.ConclusionAcute DE exposure appears to uncouple NOS, increasing reactive oxygen species generation and causing endothelial dysfunction, potentially because of depletion of BH4 limiting its bioavailability.
Allahdadi KJ, Cherng TW, Pai H, Silva AQ, Walker BR, Nelin LD, Kanagy NL. Endothelin type A receptor antagonist normalizes blood pressure in rats exposed to eucapnic intermittent hypoxia. Am J Physiol Heart Circ Physiol 295: H434-H440, 2008. First published May 30, 2008 doi:10.1152/ajpheart.91477.2007.-We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ETA) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 Ϯ 2 to 137 Ϯ 4 mmHg; P Ͻ 0.005) but did not change in sham-exposed rats. The ETA receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol ⅐ kg Ϫ1 ⅐ day Ϫ1 sc for 14 days) prevented E-IHinduced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ETA receptor antagonist BQ-123 (10 M) but not by the ET type B (ET B) receptor antagonist BQ-788 (100 M). ETA receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ETB receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ETA receptors appears to elevate blood pressure in E-IHexposed rats. sleep apnea; BQ-123; BQ-788; mitochondrial ribonucleic acid OBSTRUCTIVE SLEEP APNEA is characterized by repeated upper airway obstruction during sleep and affects between 5% and 20% of the population (32). This syndrome of sleep-disordered breathing leads to episodic hypoxia and sleep deprivation. Recent epidemiological studies reveal that sleep apnea and other forms of sleep-disordered breathing increase the risk for hypertension and associated metabolic disorders (24). However, the mechanisms whereby sleep apnea and the associated eucapnic intermittent hypoxia (E-IH) cause systemic hypertension remain incompletely understood. Recent studies show that patients with sleep apnea have increased circulating levels of endothelin (ET)-1 (29, 42), a potent vasoconstrictor and mitogenic peptide implicated in the development of many forms of arterial hypertension (1). Furthermore, the synthesis of ET-1 is increased by hypoxia, shear stress, oxidative stress, and catecholamines, which are elevated in E-IH-exposed rats and sleep apnea (42, 47). We have previously described that both blood pressure and plasma ET-1 levels are incre...
Vascular alpha(2B)-adrenoceptors (alpha(2B)-AR) may mediate vasoconstriction and contribute to the development of hypertension. Therefore, we hypothesized that blood pressure would not increase as much in mice with mutated alpha(2B)-AR as in wild-type (WT) mice following nitric oxide (NO) synthase (NOS) inhibition with N(omega)-nitro-l-arginine (l-NNA, 250 mg/l in drinking water). Mean arterial pressure (MAP) was recorded in heterozygous (HET) alpha(2B)-AR knockout mice and WT littermates using telemetry devices for 7 control and 14 l-NNA treatment days. MAP in HET mice was increased significantly on treatment days 1 and 4 to 14, whereas MAP did not change in WT mice (days 0 and 14 = 113 +/- 3 and 114 +/- 4 mmHg in WT, 108 +/- 0.3 and 135 +/- 13 mmHg in HET, P < 0.05). MAP was significantly higher in HET than in WT mice days 10 through 14 (P < 0.05). Thus blood pressure increased more rather than less in mice with decreased alpha(2B)-AR expression. We therefore examined constrictor responses to phenylephrine (PE, 10(-9) to 10(-4) M) with and without NOS inhibition to determine basal NO contributions to arterial tone. In small pressurized mesenteric arteries (inner diameter = 177 +/- 5 microm), PE constriction was decreased in untreated HET arteries compared with WT (P < 0.05). l-NNA (100 microM) augmented PE constriction more in HET arteries than in WT arteries, and responses were not different between groups in the presence of l-NNA. Acetylcholine dilated preconstricted arteries from HET mice more than arteries from WT mice. Endothelial NOS expression was increased in HET compared with WT mesenteric arteries by Western analysis. Griess assay showed increased NO(x) concentrations in HET plasma compared with those in WT plasma. These data demonstrate that diminished alpha(2B)-AR expression increases the dependence of arterial pressure and vascular tone on NO production and that vascular alpha(2B)-AR either directly or indirectly regulates vascular endothelial NOS function.
Epidemiological studies have associated traffic-related airborne pollution with adverse cardiovascular outcomes. Nitric oxide (NO) is a common component of fresh diesel and gasoline engine emissions that rapidly transforms both in the atmosphere and once inhaled. Because of this rapid transformation, limited information is available in terms of potential human exposures and adverse health effects. Young rats were exposed to whole diesel emissions (DE) adjusted to 300 µg/m3 of particulate matter (containing 3.5 ppm NO) or 0, 3, or 10 ppm NO as a positive control. Animals were also pre-injected (i.p.) with either saline or n-acetyl-cysteine (NAC), a precursor of glutathione. Predictably, pure NO exposures led to a concentration-dependent increase in plasma nitrates compared to controls, which lasted for roughly 4 hr post-exposure. Whole DE exposure for 1 hr also led to a doubling of plasma NOx. NAC injection increased the levels of plasma nitrates and nitrites (NOx) in the DE exposure group. Inhibition of NOS by L-NNA did not block the rise in plasma NOx, demonstrating that the increase was entirely due to exogenous sources. Both DE and pure NO exposures paradoxically led to elevated eNOS expression in aortic tissue. Furthermore, coronary arterioles from NO-exposed animals exhibited greater constriction to endothelin-1 compared to controls, consistent with a derangement of the NOS system. Thus, NO may be an important contributor to traffic-related cardiovascular morbidity although further research is necessary for proper hazard identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.