Monocular 3D human pose and shape estimation is an inherently ill-posed problem due to depth ambiguities, occlusions, and truncations. Recent probabilistic approaches learn a distribution over plausible 3D human meshes by maximizing the likelihood of the ground-truth pose given an image. We show that this objective function alone is not sufficient to best capture the full distributions. Instead, we propose to additionally supervise the learned distributions by minimizing the distance to distributions encoded in heatmaps of a 2D pose detector. Moreover, we reveal that current methods often generate incorrect hypotheses for invisible joints which is not detected by the evaluation protocols. We demonstrate that person segmentation masks can be utilized during training to significantly decrease the number of invalid samples and introduce two metrics to evaluate it. Our normalizing flow-based approach predicts plausible 3D human mesh hypotheses that are consistent with the image evidence while maintaining high diversity for ambiguous body parts. Experiments on 3DPW and EMDB show that we outperform other state-of-the-art probabilistic methods. Code is available for research purposes at https://github.com/twehrbein/humr.
Background
Shotgun metagenome analysis provides a robust and verifiable method for comprehensive microbiome analysis of fungal, viral, archaeal and bacterial taxonomy, particularly with regard to visualization of read mapping location, normalization options, growth dynamics and functional gene repertoires. Current read classification tools use non-standard output formats, or do not fully show information on mapping location. As reference datasets are not perfect, portrayal of mapping information is critical for judging results effectively.
Results
Our alignment-based pipeline, Wochenende, incorporates flexible quality control, trimming, mapping, various filters and normalization. Results are completely transparent and filters can be adjusted by the user. We observe stringent filtering of mismatches and use of mapping quality sharply reduces the number of false positives. Further modules allow genomic visualization and the calculation of growth rates, as well as integration and subsequent plotting of pipeline results as heatmaps or heat trees. Our novel normalization approach additionally allows calculation of absolute abundance profiles by comparison with reads assigned to the human host genome.
Conclusion
Wochenende has the ability to find and filter alignments to all kingdoms of life using both short and long reads, and requires only good quality reference genomes. Wochenende automatically combines multiple available modules ranging from quality control and normalization to taxonomic visualization. Wochenende is available at https://github.com/MHH-RCUG/nf_wochenende.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.