Deep learning methods employ multiple processing layers to learn hierarchical representations of data, and have produced state-of-the-art results in many domains. Recently, a variety of model designs and methods have blossomed in the context of natural language processing (NLP). In this paper, we review significant deep learning related models and methods that have been employed for numerous NLP tasks and provide a walk-through of their evolution. We also summarize, compare and contrast the various models and put forward a detailed understanding of the past, present and future of deep learning in NLP.
Commonsense knowledge is vital to many natural language processing tasks. In this paper, we present a novel open-domain conversation generation model to demonstrate how large-scale commonsense knowledge can facilitate language understanding and generation. Given a user post, the model retrieves relevant knowledge graphs from a knowledge base and then encodes the graphs with a static graph attention mechanism, which augments the semantic information of the post and thus supports better understanding of the post. Then, during word generation, the model attentively reads the retrieved knowledge graphs and the knowledge triples within each graph to facilitate better generation through a dynamic graph attention mechanism. This is the first attempt that uses large-scale commonsense knowledge in conversation generation. Furthermore, unlike existing models that use knowledge triples (entities) separately and independently, our model treats each knowledge graph as a whole, which encodes more structured, connected semantic information in the graphs. Experiments show that the proposed model can generate more appropriate and informative responses than state-of-the-art baselines.
We examine the recent debates about governance, focusing particularly on the World Bank and identify certain factors which have in recent years moved the Bank's thinking beyond narrowly economic notions of development. Our account is tentative and we suggest further avenues of research. We try to connect the Bank's thinking systematically with key features of liberal discourse and suggest that thiscan do much to illuminate practice. We illustrate this with a discussion of the growing relationship between the Bank and NGOs, to contribute to forms of analysis which go beyond the ideas vs. interests polarities that still inform so much of contemporary social and political theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.