Bacterial phage-like particles (gene transfer agents—GTAs) are widely employed as a crucial genetic vector in horizontal gene transfer. GTA-mediated gene transfer is induced in response to various stresses; however, regulatory mechanisms are poorly understood. We found that the persulfide-responsive transcription factor SqrR may repress the expression of several GTA-related genes in the photosynthetic bacterium Rhodobacter capsulatus. Here, we show that the sqrR deletion mutant (ΔsqrR) produces higher amounts of intra- and extracellular GTA and gene transfer activity than the wild type (WT). The transcript levels of GTA-related genes are also increased in ΔsqrR. In spite of the presumption that GTA-related genes are regulated in response to sulfide by SqrR, treatment with sulfide did not alter the transcript levels of these genes in the WT strain. Surprisingly, hydrogen peroxide increased the transcript levels of GTA-related genes in the WT, and this alteration was abolished in the ΔsqrR strain. Moreover, the absence of SqrR changed the intracellular cyclic dimeric GMP (c-di-GMP) levels, and the amount of c-di-GMP was correlated with GTA activity and biofilm formation. These results suggest that SqrR is related to the repression of GTA production and the activation of biofilm formation via control of the intracellular c-di-GMP levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.