Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.
Phytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.
We have experimentally examined the characteristics of nucleosome array formation in different regions of mouse liver chromatin, and have computationally analyzed the corresponding genomic DNA sequences. We have shown that the mouse adenosine deaminase (MADA) gene locus is packaged into an exceptionally regular nucleosome array with a shortened repeat, consistent with our computational prediction based on the DNA sequence. A survey of the mouse genome indicates that <10% of 70 kb windows possess a nucleosome-ordering signal, consisting of regular long-range oscillations in the period-10 triplet motif non-T, A/T, G (VWG), which is as strong as the signal in the MADA locus. A strong signal in the center of this locus, confirmed by in vitro chromatin assembly experiments, appears to cooperate with weaker, in-phase signals throughout the locus. In contrast, the mouse odorant receptor (MOR) locus, which lacks locus-wide signals, was representative of ∼40% of the mouse genomic DNA surveyed. Within this locus, nucleosome arrays were similar to those of bulk chromatin. Genomic DNA sequences which were computationally similar to MADA or MOR resulted in MADA- or MOR-like nucleosome ladders experimentally. Overall, we provide evidence that computationally predictable information in the DNA sequence may affect nucleosome array formation in animal tissue.
Evidence is provided that some condensed linker histone-containing chromatin structures are highly flexible in solutions containing 2 mM Mg2+. Chromatin assembled in vitro +/- histone H5 on a 6.3 kb linear DNA fragment in 90 mM NaCl using the polyglutamic acid method sedimented fairly homogeneously. The H5-containing sample had s(20, w) values that were 58-69% greater than the sample lacking H5. Chromatin assembled on linear pUC19 plasmid DNA was treated with T4 DNA ligase in solutions containing 2 mM Mg2+ over a range of DNA concentrations. It was found that the intramolecular DNA ends of the chromatin could be joined together more efficiently than the intramolecular ends of the naked DNA at the higher DNA concentrations. This result could not be attributed to the effective reduction in DNA length by nucleosome formation. The chromatin structures formed did not have naked DNA tails extending from the ends as assessed by exonuclease III digestion. Chromatin assembled on DNA shortened by up to 420 bp gave very similar results, suggesting that the structure was a flexible one, rather than a rigid one having DNA ends that were fortuitously juxtaposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.