Abstract. Wind farm underperformance can lead to significant losses in revenues. The efficient detection of wind turbines operating below their expected power output and immediate corrections help maximize asset value. The method, presented in this paper, estimates the environmental conditions from turbine states and uses precalculated lookup tables from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output ratio between two turbines are an indication of underperformance. The confidence of detected underperformance is estimated by a detailed analysis of the uncertainties of the method. Power normalization with reference turbines and averaging several measures performed by devices of the same type can reduce uncertainties for estimating the expected power. A demonstration of the method's ability to detect underperformance in the form of degradation and curtailment is given. An underperformance of 8 % could be detected in a triple-wake condition.
Abstract. For offshore wind farms, wake effects are among the largest sources of losses in energy production. At the same time, wake modelling is still associated with very high uncertainties. Therefore current research focusses on improving wake model predictions. It is known that atmospheric conditions, especially atmospheric stability, crucially influence the magnitude of those wake effects. The classification of atmospheric stability is usually based on measurements from met masts, buoys or lidar (light detection and ranging). In offshore conditions these measurements are expensive and scarce. However, every wind farm permanently produces SCADA (supervisory control and data acquisition) measurements. The objective of this study is to establish a classification for the magnitude of wake effects based on SCADA data. This delivers a basis to fit engineering wake models better to the ambient conditions in an offshore wind farm. The method is established with data from two offshore wind farms which each have a met mast nearby. A correlation is established between the stability classification from the met mast and signals within the SCADA data from the wind farm. The significance of these new signals on power production is demonstrated with data from two wind farms with met mast and long-range lidar measurements. Additionally, the method is validated with data from another wind farm without a met mast. The proposed signal consists of a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity (TI) when the wind turbines were operating in partial load. It allows us to distinguish between conditions with different magnitudes of wake effects. The proposed signal is very sensitive to increased turbulence induced by neighbouring turbines and wind farms, even at a distance of more than 38 rotor diameters.
Abstract. Atmospheric conditions have a clear influence on wake effects. Stability classification is usually based on wind speed, turbulence intensity, shear and temperature gradients measured partly at met masts, buoys or LiDARs. The objective of this paper is to find a classification for stability based on wind turbine Supervisory Control and Data Acquisition (SCADA) measurements in order to fit engineering wake models better to the current ambient conditions. Two offshore wind farms with met masts have been used to establish a correlation between met mast stability classification and new aggregated artificial signals. The significance of these new signals on power production is demonstrated for two wind farms with met masts and measurements from a long range LiDAR and validated against data from one further wind farm without a met mast. We found a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity when the wind turbines were operating in partial load. The proposed signal is very sensitive to increased turbulence due to neighbouring turbines and wind farms even at a distance of more than 38 rotor diameters away. It allows to distinguish between conditions with different magnitude of wake effects.
Abstract. Wind farm underperformance can lead to significant losses in revenues. Efficient detection of wind turbines operating below their expected power output and immediate corrections help maximise asset value. The presented method estimates the environmental conditions from turbine states and uses pre-calculated power matrices from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output are an indication of underperformance. The confidence of detected underperformance is estimated by detailed analysis of uncertainties of the method. Power normalisation with reference turbines and averaging several measurement devices can reduce uncertainties for estimating the expected power. A demonstration of the method’s ability to detect underperformance in the form of degradation and curtailment is given. Underperformance of 8 % could be detected in a triple wake condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.