Proton exchange membrane water electrolysis (PEM WE) suffers from several issues, such as the high cost and low stability of the electrolyser unit components. This is especially pronounced evident for an anode polarised to a high potential and in contact with an acidic membrane. Such a combination is detrimental to the vast majority of electron-conducting materials. Nowadays Ti (possessing a protective passive layer on its surface) is used as the construction material of an anode gas diffusion layer. Since the passivation layer itself is non-/semiconducting, an excessive degree of passivation leads to high surface contact resistance and to energy losses during PEM WE operation. This problem is usually solved by coating the Ti surface with precious metals. This leads to a further increase of the already very high cell investment costs. In this work an alternative method based on appropriate Ti etching (in acid) is presented. The (surface) composition of the samples treated was investigated using SEM, X-ray fluorescence and diffraction and photoelectron spectroscopy. TiHx was found in the subsurface layer. This was responsible for preventing excessive passivation of the Ti metal. The superior performance of the etched Ti gas diffusion layer (compared to non-etched) in a PEM water electrolyser was confirmed during an (>100 hour) experiment with current densities of up to 1 A cm -2 . Using the described treatment the surface contact resistance was substantially reduced and its increase during PEM WE operation was largely suppressed. As this method is very simple and cheap, it has tremendous potential for improving PEM WE process efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.