The weather is an important driver of the wildfire incidence because it strongly influences fuel availability and flammability. In the Mediterranean climate, the spatial and temporal patterns of fire weather present high variability, which help to understand the variable fire regimes. To assess this link in the Iberian Peninsula and the role of fire weather on fire incidence variability, this work identified pyro-regions, characterized the fire regimes in these regions and compared them with the spatial and seasonal distribution of several components of the Canadian Forest Fire Weather Index (FWI) System. A cluster analysis was performed on monthly normalized burnt area (NBA) series for the 1980 -2015 period in each administrative division of the Iberian Peninsula (Portuguese districts and Spanish provinces), which revealed four pyro-regions (Northwest, North, Southwest and East) as well as significant spatial and temporal variability of NBA patterns. A separate analysis for 1980 -1997 and 1998 -2015 revealed noteworthy changes in the border of pyro-regions caused by changes in NBA seasonal patterns in some administrative regions. The analysis of the fire weather risk distribution for 1980 -2017 included the assessment of extreme fire weather days, defined as days with Daily Severity Rating (DSR) above the 95 th percentile, for the summer fire season, and as days with Drought Code above the 95 th percentile, for the winter-spring fire season. The distribution of the monthly extreme fire weather days is highly correlated with the NBA seasonal variability and explains the differences between seasonal wildfire characteristics and the recent changes in the border administrative regions. The analysis of the fire weather patterns for large wildfires disclosed that these events were linked with extreme DSR days, especially in the NW pyro-region. These findings highlight the strong link between climate variability and fire regimes in the Iberian Peninsula, and can therefore help assess the impacts of climate change and to project future burnt area patterns.
Wildfire is known to create the pre-conditions leading to accelerated soil erosion. Unfortunately, its occurrence is expected to increase with climate change. The objective of this study was to assess the impacts of fire on runoff and soil erosion in a context of global change, and to evaluate the effectiveness of mulching as a post-fire erosion mitigation measure. For this, the long-term soil erosion model LandSoil was calibrated for a Mediterranean catchment in north-central Portugal that burnt in 2011. LandSoil was then applied for a 20-year period to quantify the separate and combined hydrological and erosion impacts of fire frequency and of post-fire mulching using four plausible site-specific land use and management scenarios (S1. business-as-usual, S2. market-oriented, S3. environmental protection and S4. sustainable trade-off) and an intermediate climate change scenario Representative Concentration Pathway (RCP) 4.5 by 2050. The obtained results showed that: (i) fire had a reduced impact on runoff generation in the studied catchment (<5%) but a marked impact on sediment yield (SY) by about 30%; (ii) eucalypt intensification combined with climate change and fires can increase SY by threefold and (iii) post-fire mulching, combined with riparian vegetation maintenance/restoration and reduced tillage at the landscape level, was highly effective to mitigate soil erosion under global change and associated, increased fire frequency (up to 50% reduction). This study shows how field monitoring data can be combined with numerical erosion modeling to segregate the prominent processes occurring in post forest fire conditions and find the best management pathways to meet international goals on achieving land degradation neutrality (LDN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.