This paper studies the tuning process of controllers for fully actuated manipulators. To this end, we propose a methodology to design the desired damping matrix-alternatively, the derivative gain of a PD controller-of the closed-loop system such that n second-order systems can approximate its behavior with a prescribed damping coefficient, where n denotes the degrees of freedom of the system. The proposed approach is based on the linearization of the closed-loop system around the desired configuration and is suitable for different control approaches, such as PD control plus gravity compensation, impedance control, and passivity-based control. Furthermore, we extensively analyze simulations and experimental results in a cobot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.