There is a vast amount of financial information on companies' financial performance available to investors in electronic form today. While automatic analysis of financial figures is common, it has been difficult to extract meaning from the textual parts of financial reports automatically. The textual part of an annual report contains richer information than the financial ratios. In this paper, we combine data and text mining methods for analysing quantitative and qualitative data from financial reports, in order to see if the textual part of the report contains some indications about future financial performance. The quantitative analysis has been performed using self-organizing maps, and the qualitative analysis using prototype-matching text clustering. The analysis is performed on the quarterly reports of three leading companies in the telecommunications sector. Copyright
In this paper, we illustrate the use of the self-organizing map technique for financial performance analysis and benchmarking. We build a database of financial ratios indicating the performance of 91 international pulp and paper companies for the time period 1995–2001. We then use the self-organizing map technique to analyze and benchmark the performance of the five largest pulp and paper companies in the world. The results of the study indicate that by using the self-organizing maps, we are able to structure, analyze, and visualize large amounts of multidimensional financial data in a meaningful manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.