The near-universal genetic code defines the correspondence between codons in genes and amino acids in proteins. Here we refactored the structure of the genetic code in Escherichia coli and created orthogonal genetic codes which restrict the escape of synthetic genetic information into natural life. We developed orthogonal, and mutually orthogonal, horizontal gene transfer systems, which permit the transfer of genetic information between organisms that use the same genetic code, but restrict transfer of genetic information between organisms that use different genetic codes. Moreover, we showed that locking refactored codes into synthetic organisms completely blocks invasion by mobile genetic elements, which carry their own translation factors and successfully invade organisms with canonical and compressed genetic codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.