Nitinol is a perspective alloy that is difficult to weld because of its high sensitivity to heat, atmospheric gases and the NiTi phase instability. We evaluated several welding techniques with regard to their applicability to weld fine pseudoelastic NiTi wires. Namely, we tested the microplasma arc, laser, electron beam, resistance and capacitor discharge welding. In conclusion, the behaviour of the weld for any of the implemented welding techniques is similar; it leads to a loss of mechanical properties in the welded joint caused by a recrystallization and an increased amount of brittle intermetallic phases. Yet, under perfect shielding and with a minimum heat input, the welds could, as a whole, retain the majority of their properties, and, as such, have the desired properties close to the base metal.
Water injection is a means of internal cooling of the engine. During combustion, excess temperatures generated are absorbed by water as latent heat. Optimum water injection quantities were found to be about 0.015 ml to 0.031 ml of water per cycle on a 592 cc SI engine. The experiments were carried out by tapping the fuel injector signal and designing a circuit to inject water at the instant petrol is injected. Fuel injection duration was tuned by using a Wide Band Lambda sensor. The engine was supercharged as well by means of compressed air supply and regulated by hysteresis control. Water injection was investigated while varying spark advance to find the Maximum Brake Torque (MBT). Maximum obtained torque improvement with water injection was 16 %. This was achieved at a manifold absolute pressure of 120 kPa, with air temperature at ambient. The same load condition, 120 kPa, with air heated to the temperature that would be obtained from isentropic compression, resulted in a torque improvement of 7 %.
High speed steels (HSS) as iron alloys reinforced by carbides of tungsten, chromium, vanadium and/or cobalt are known for more than 100 years. HSS is commonly used for cutting tools fabrication because of their high hardness, ductility, and strength and temperature resistance. Recently many different kinds of thin layers are often deposited on HSS tools in order to increase their lifetime. HSS are produced by conventional metallurgical methods and the tools are hardened by quenching and tempering. Recently, large part of HSS tools are produced by powder metallurgy (i.e. HIPhot isostatic pressing). There are also some studies about thermal spraying of HSS but there is no evidence about Plasma Transfer Arc cladding of HSS. Two powders of HSS 23, resp. HSS30 grade were selected and deposited by Plasma Transfer Arc (PTA) and pulsed PTA on to mild steel substrate. In order to find the ability of thick layer forming, four layers cladding were used. To minimize heat input the influence of 76 Hz pulsation was also studied. Vickers hardness was measured on cross section and metallography of coatings was done. It was found that with selected parameters thick layer of HSS can be deposited. Pulsation increases the hardness of coatings in comparison with layers produced by direct current PTA. PTA and pulsed PTA methods of HSS parts fabrication can be used for both manufacturing and reparation of cutting tools and also for 3D additive manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.