We propose a new framework for measuring connectedness among financial variables that arises due to heterogeneous frequency responses to shocks. To estimate connectedness in short-, medium-, and long-term financial cycles, we introduce a framework based on the spectral representation of variance decompositions. In an empirical application, we document the rich time-frequency dynamics of volatility connectedness in US financial institutions. Economically, periods in which connectedness is created at high frequencies are periods when stock markets seem to process information rapidly and calmly, and a shock to one asset in the system will have an impact mainly in the short term. When the connectedness is created at lower frequencies, it suggests that shocks are persistent and are being transmitted for longer periods.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents inWe propose a general framework for measuring frequency dynamics of connectedness in economic variables based on spectral representation of variance decompositions. We argue that the frequency dynamics is insightful when studying the connectedness of variables as shocks with heterogeneous frequency responses will create frequency dependent connections of different strength that remain hidden when time domain measures are used. Two applications support the usefulness of the discussion, guide a user to apply the methods in different situations, and contribute to the literature with important findings about sources of connectedness. Giving up the assumption of global stationarity of stock market data and approximating the dynamics locally, we document rich time-frequency dynamics of connectedness in US market risk in the first application. Controlling for common shocks due to common stochastic trends which dominate the connections, we identify connections of global economy at business cycle frequencies of 18 up to 96 months in the second application. In addition, we study the effects of cross-sectional dependence on the connectedness of variables. July 8, 2015 AbstractWe propose a general framework for measuring frequency dynamics of connectedness in economic variables based on spectral representation of variance decompositions. We argue that the frequency dynamics is insightful when studying the connectedness of variables as shocks with heterogeneous frequency responses will create frequency dependent connections of different strength that remain hidden when time domain measures are used. Two applications support the usefulness of the discussion, guide a user to apply the methods in different situations, and contribute to the literature with important findings about sources of connectedness. Giving up the assumption of global stationarity of stock market data and approximating the dynamics locally, we document rich time-frequency dynamics of connectedness in US market risk in the first application. Controlling for common shocks due to common stochastic trends which dominate the connections, we identify connections of global economy at business cycle frequencies of 18 up to 96 months in the second application. In addition, we study the effects of cross-sectional dependence on the connectedness of variables.
This paper proposes an enhanced approach to modeling and forecasting volatility using high frequency data. Using a forecasting model based on Realized GARCH with multiple time-frequency decomposed realized volatility measures, we study the influence of different timescales on volatility forecasts. The decomposition of volatility into several timescales approximates the behaviour of traders at corresponding investment horizons. The proposed methodology is moreover able to account for impact of jumps due to a recently proposed jump wavelet two scale realized volatility estimator. We propose a realized Jump-GARCH models estimated in two versions using maximum likelihood as well as observation-driven estimation framework of generalized autoregressive score. We compare forecasts using several popular realized volatility measures on foreign exchange rate futures data covering the recent financial crisis. Our results indicate that disentangling jump variation from the integrated variation is important for forecasting performance. An interesting insight into the volatility process is also provided by its multiscale decomposition. We find that most of the information for future volatility comes from high frequency part of the spectra representing very short investment horizons. Our newly proposed models outperform statistically the popular as well conventional models in both one-day and multi-period-ahead forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.