Metabolic highways may be orchestrated by the assembly of sequential enzymes into protein complexes, or metabolons, to facilitate efficient channeling of intermediates and to prevent undesired metabolic cross-talk while maintaining metabolic flexibility. Here we report the isolation of the dynamic metabolon that catalyzes the formation of the cyanogenic glucoside dhurrin, a defense compound produced in sorghum plants. The metabolon was reconstituted in liposomes, which demonstrated the importance of membrane surface charge and the presence of the glucosyltransferase for metabolic channeling. We used in planta fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to study functional and structural characteristics of the metabolon. Understanding the regulation of biosynthetic metabolons offers opportunities to optimize synthetic biology approaches for efficient production of high-value products in heterologous hosts.
SummaryCyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wildtype amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.
Background:Investigating the mechanism of NADPH-dependent conformational changes of POR in nanodiscs.
Results:The conformational equilibrium of compact and extended POR, shifts toward the compact form (from 30 to 60%) upon reduction by NADPH.
Conclusion:The NADPH-dependent conformational changes follow the "swinging model." Significance: This is the first time that the action of a membrane protein located in a lipid bilayer environment is probed by neutron reflectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.