We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
Interfaces between materials with differently ordered phases present unique opportunities to study fundamental problems in physics. One example is the interface between a singlet superconductor and a half-metallic ferromagnet, where Cooper pairing occurs between electrons with opposite spin on one side, while the other displays 100% spin polarisation. The recent surprising observation of a supercurrent through half-metallic CrO_2 therefore requires a mechanism for conversion between unpolarised and completely spin polarised supercurrents. Here we suggest a conversion mechanism based on electron spin precession together with triplet pair rotation at interfaces with broken spin-rotation symmetry. In the diffusive limit the triplet supercurrent is dominated by inter-related odd-frequency s-wave and even-frequency p-wave pairs. In the crossover to the ballistic limit additional symmetry components become relevant. The interface region exhibits a superconducting state of mixed-spin pairs with highly unusual symmetry properties that opens up new perspectives for exotic Josephson devices.Comment: 10 pages, 9 figures, published version including supplementary material, with some typos corrected. (Submitted to Nature Physics: 4 Dec 2006, published 13 Jan 2008
The formation of bound states at surfaces of materials with an energy gap in the bulk electron spectrum is a well known physical phenomenon. At superconductor surfaces, quasiparticles with energies inside the superconducting gap may be trapped in bound states in quantum wells, formed by total reflection against the vacuum and total Andreev reflection against the superconductor. Since an electron reflects as a hole and sends a Cooper pair into the superconductor, the surface states give rise to resonant transport of quasiparticle and Cooper pair currents, and may be observed in tunnelling spectra. In superconducting junctions these surface states may hybridize and form bound Andreev states, trapped between the superconducting electrodes. In d-wave superconductors, the order parameter changes sign under 90 • rotation and, as a consequence, Andreev reflection may lead to the formation of zero energy quasiparticle bound states, midgap states (MGS). The formation of MGS is a robust feature of d-wave superconductivity and provides a unified framework for many important effects which will be reviewed: large Josephson current, low-temperature anomaly of the critical Josephson current, π -junction behaviour, 0 → π junction crossover with temperature, zero-bias conductance peaks, paramagnetic currents, time reversal symmetry breaking, spontaneous interface currents, and resonance features in subgap currents. Taken together these effects, when observed in experiments, provide proof for d-wave superconductivity in the cuprates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.