Musculoskeletal disorders are one of the major health burdens and a leading source of disability worldwide, affecting both juvenile and elderly populations either as a consequence of ageing or extrinsic factors such as physical injuries. This condition often involves a group of locomotor structures such as the bones, joints and muscles and may therefore cause significant economic and emotional impact. Some pharmacological and non-pharmacological treatments have been considered as potential solutions, however, these alternatives have provided quite limited efficacy due to the short-term effect on pain management and inability to restore damaged tissue.The emergence of novel therapeutic alternatives such as the application of orthobiologics, particularly bone marrow aspirate (BMA) clot, have bestowed medical experts with considerable optimism as evidenced by the significant results found in numerous studies addressed in this manuscript. Although other products have been proposed for the treatment of musculoskeletal injuries, the peculiar interest in BMA, fibrin clot and associated fibrinolytic mechanisms continues to expand.BMA is a rich source of various cellular and molecular components which have demonstrated positive effects on tissue regeneration in many in vitro and in vivo models of musculoskeletal injuries. In addition to being able to undergo self-renewal and differentiation, the hematopoietic and mesenchymal stem cells present in this orthobiologic elicit key immunomodulatory and paracrine roles in inflammatory responses in tissue injury and drive the coagulation cascade towards tissue repair via different mechanisms.Although promising, these complex regenerative mechanisms have not yet been fully elucidated.
Ever since its emergence, the highly transmissible and debilitating coronavirus disease spread at an incredibly fast rate, causing global devastation in a matter of months. SARS-CoV-2, the novel coronavirus responsible for COVID-19, infects hosts after binding to ACE2 receptors present on cells from many structures pertaining to the respiratory, cardiac, hematological, neurological, renal and gastrointestinal systems. COVID-19, however, appears to trigger a severe cytokine storm syndrome in pulmonary structures, resulting in oxidative stress, exacerbated inflammation and alveolar injury. Due to the recent nature of this disease no treatments have shown complete efficacy and safety. More recently, however, researchers have begun to direct some attention towards GSH and NAC. These natural antioxidants play an essential role in several biological processes in the body, especially the maintenance of the redox equilibrium. In fact, many diseases appear to be strongly related to severe oxidative stress and deficiency of endogenous GSH. The high ratios of ROS over GSH, in particular, appear to reflect severity of symptoms and prolonged hospitalization of COVID-19 patients. This imbalance interferes with the body's ability to detoxify the cellular microenvironment, fold proteins, replenish antioxidant levels, maintain healthy immune responses and even modulate apoptotic events. Oral administration of GSH and NAC is convenient and safe, but they are susceptible to degradation in the digestive tract. Considering this drawback, nebulization of GSH and NAC as an adjuvant therapy may therefore be a viable alternative for the management of the early stages of COVID-19.
Platelet- and fibrin-rich orthobiologic products, such as autologous platelet concentrates, have been extensively studied and appreciated for their beneficial effects on multiple conditions. Platelet-rich plasma (PRP) and its derivatives, including platelet-rich fibrin (PRF), have demonstrated encouraging outcomes in clinical and laboratory settings, particularly in the treatment of musculoskeletal disorders such as osteoarthritis (OA). Although PRP and PRF have distinct characteristics, they share similar properties. The relative abundance of platelets, peripheral blood cells, and molecular components in these orthobiologic products stimulates numerous biological pathways. These include inflammatory modulation, augmented neovascularization, and the delivery of pro-anabolic stimuli that regulate cell recruitment, proliferation, and differentiation. Furthermore, the fibrinolytic system, which is sometimes overlooked, plays a crucial role in musculoskeletal regenerative medicine by regulating proteolytic activity and promoting the recruitment of inflammatory cells and mesenchymal stem cells (MSCs) in areas of tissue regeneration, such as bone, cartilage, and muscle. PRP acts as a potent signaling agent; however, it diffuses easily, while the fibrin from PRF offers a durable scaffolding effect that promotes cell activity. The combination of fibrin with hyaluronic acid (HA), another well-studied orthobiologic product, has been shown to improve its scaffolding properties, leading to more robust fibrin polymerization. This supports cell survival, attachment, migration, and proliferation. Therefore, the administration of the “power mix” containing HA and autologous PRP + PRF may prove to be a safe and cost-effective approach in regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.