This paper addresses the question of when triple arrays can be constructed from Youden squares by removing a column together with the symbols therein, and then exchanging the role of columns and symbols. The scope of the investigation is limited to the standard case of triple arrays with v = r + c − 1. For triple arrays with λ cc = 1 it is proven that they can never be constructed in this way, and for triple arrays with λ cc = 2 it is proven that there always exists a suitable Youden square and a suitable column for this construction. Further, it is proven that Youden square constructed from a certain family of difference sets never give rise to triple arrays in this way but always gives rise to double arrays. Finally, it is proven that all triple arrays in the single known infinite family, the Paley triple arrays, can all be constructed in this way for some suitable choice of Youden square and column.
Abstract. This paper addresses the question whether triple arrays can be constructed from Youden squares developed from difference sets. We prove that if the difference set is abelian, then having −1 as multiplier is both a necessary and sufficient condition for the construction to work. Using this, we are able to give a new infinite family of triple arrays. We also give an alternative and more direct version of the construction, leaving out the intermediate step via Youden squares. This is used when we analyse the case of non-abelian difference sets, for which we prove a sufficient condition for giving triple arrays. We do a computer search for such non-abelian difference sets, but have not found any examples satisfying the given condition.
The first main aim of this article is to derive an explicit solution formula for the scalar two-dimensional Toda lattice depending on three independent operator parameters, ameliorating work in [31]. This is achieved by studying a noncommutative version of the 2d-Toda lattice, generalizing its soliton solution to the noncommutative setting. The purpose of the applications part is to show that the family of solutions obtained from matrix data exhibits a rich variety of asymptotic behaviour. The first indicator is that web structures, studied extensively in the literature, see [4] and references therein, are a subfamily. Then three further classes of solutions (with increasingly unusual behaviour) are constructed, and their asymptotics are derived.
A triple array is a row-column design which carries two balanced incomplete block designs (BIBDs) as substructures. McSorley et al. (Des Codes Cryptogr 35: 21-45, 2005), Section 8, gave one example of a triple array that also carries a third BIBD, formed by its row-column intersections. This triple array was said to be balanced for intersection, and they made a search for more such triple arrays among all potential parameter sets up to some limit. No more examples were found, but some candidates with suitable parameters were suggested. We define the notion of an inner design with respect to a block for a symmetric BIBD and present criteria for when this inner design can be balanced. As triple arrays in the canonical case correspond to SBIBDs, this in turn yields new existence criteria for triple arrays balanced for intersection. In particular, we prove that the residual design of the related SBIBD with respect to the defining block must be quasi-symmetric, and give necessary and sufficient conditions on the intersection numbers. This, together with our parameter bounds enable us to exclude the suggested triple array candidates in McSorley et al. (Des Codes Cryptogr 35: 21-45, 2005) and many others in a wide search. Further we investigate the existence of SBIBDs whose inner designs are balanced with respect to every block. We show as a key result that such SBIBDs must possess the quasi-3 property, and we answer the existence question for all known classes of these designs. Keywords Symmetric design • Triple array • Balanced for intersection • Quasi-3 design • Inner design with respect to a block • Quasi-symmetric design Mathematics Subject Classification (2010) 05B05 • 05B30 Communicated by J. D. Key.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.