a b s t r a c tWe have studied the bonding and elastic properties of amorphous AlYB 14 using theoretical and experimental means. Based on pair distribution functions and Voronoi tessellation, the icosahedral bonding is expected. A rather large Young's modulus of 365 GPa is predicted for amorphous AlYB 14 .To verify these predictions, we have measured density, pair distribution functions, binding energy and elastic properties of Al-Y-B thin films synthesized by magnetron sputtering. The calculated and measured densities are with a deviation of 3.5% in good agreement. The measured binding energy and pair distribution functions are also consistent with icosahedral bonding. The measured Young's modulus is 305 719 GPa, which is 16% smaller than the theoretical value and hence in good agreement. Overall consistency between theory and experiments was obtained indicating that the computational strategy employed here is useful to describe correlations between bonding, elasticity, density as well as (chemical) short range order and may hence enable future knowledge-based design of these ternary borides which show great potential for surface protection applications.
In situ high-temperature X-ray diffraction experiments using high-energy photons and ab initio molecular dynamics simulations are performed to probe the temperature-induced changes in the topological short-range order in magnetron sputtered Co 67 B 33 metallic glass thin films. Based on this correlative experimental and theoretical study, the presence of B-Co-B rigid second-order structures at room temperature and the temperature-induced decrease in the population of these strongly bonded building blocks are inferred. This notion is consistent with experimental reports delineating the temperature dependence of elastic limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.