Small drones are a rising threat due to their possible misuse for illegal activities, in particular smuggling and terrorism. The project SafeShore, funded by the European Commission under the Horizon 2020 program, has launched the "drone-vs-bird detection challenge" to address one of the many technical issues arising in this context. The goal is to detect a drone appearing at some point in a video where birds may be also present: the algorithm should raise an alarm and provide a position estimate only when a drone is present, while not issuing alarms on birds. This paper reports on the challenge proposal, evaluation, and results 1 .
Small drones are a rising threat due to their possible misuse for illegal activities, in particular smuggling and terrorism. The project SafeShore, funded by the European Commission under the Horizon 2020 program, has launched the "drone-vs-bird detection challenge" to address one of the many technical issues arising in this context. The goal is to detect a drone appearing at some point in a video where birds may be also present: the algorithm should raise an alarm and provide a position estimate only when a drone is present, while not issuing alarms on birds. This paper reports on the challenge proposal, evaluation, and results 1 .
The field of biometrics research encompasses the need to associate an identity to an individual based on the persons physiological or behaviour traits. While the use of intrusive techniques such as retina scans and finger print identification has resulted in highly accurate systems, the scalability of such systems in real-world applications such as surveillance and border security has been limited. As a branch of biometrics research, the origin of soft biometrics could be traced back to need for non-intrusive solutions for extracting physiological traits of a person. Following high number of research outcomes reported in the literature on soft biometrics, this paper aims to consolidate the scope of soft biometrics research across four thematic schemes (i) a detailed review of soft biometrics research data sets, their annotation strategies and building a largest novel collection of soft traits; (ii) the assessment of metrics that affect the performance of soft biometrics system; (iii) a comparative analysis on feature and modality level fusion reported in the literature for enhancing the system performance; and (iv) a performance analysis of hybrid soft biometrics recognition system using multi-scale criterion. The paper also presents a detailed analysis on the global traits associated to person identity such as gender, age and ethnicity. The contribution of the paper is to provide a comprehensive review of scientific literature, identify open challenges and offer insights on new research directions in the filed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.