Laser irradiation to induce networks of graphene‐based structures toward cost‐effective, flexible device fabrication is a highly pursued area, with applications in various polymeric substrates. This work reports the application of this approach toward commonly available, eco‐friendly, low‐cost substrates, namely, chromatographic and office papers. Through an appropriate chemical treatment with sodium tetraborate as a fire‐retardant agent, photothermal conversion to porous laser‐induced graphene (LIG) on paper is achieved. Raman peaks are identified, with I2D/IG and ID/IG peak ratios of 0.616 ± 0.095 and 1.281 ± 0.173, showing the formation of multilayered graphenic material, exhibiting sheet resistances as low as 56.0 Ω sq–1. Coplanar, LIG‐based, three‐electrode systems (working, counter and reference electrodes) are produced and characterized, showing high current Faradaic oxidation and reduction peaks, translating in high electrochemical active area, doubling the geometric area. Good electron transfer kinetics performed exclusively with on‐chip measurements are reached, with k0 values as high as 7.15 × 10–4 cm s–1. Proof‐of‐concept, amperometric, enzymatic glucose biosensors are developed, exhibiting good analytical performance in physiologically relevant glucose levels, with results pointing to the applicability of paper‐based LIG toward efficient, disposable electrochemical sensor development, increasing their sustainability and accessibility, while simplifying their production and reducing their cost.
The plasmonic properties of gold nanoparticles (AuNPs) are a promising tool to develop sensing alternatives to traditional, enzyme-catalyzed reactions. The need for sensing alternatives, especially in underdeveloped areas of the world, has given rise to the application of nonenzymatic sensing approaches paired with cellulosic substrates to biochemical analysis. Herein, we present three individual, low-step, wet-chemistry, colorimetric assays for three target biomarkers, namely, glucose, uric acid, and free cholesterol, relevant in diabetes control and their translation into paper-based assays and microfluidic platforms for multiplexed analysis. For glucose determination, an in situ AuNPs synthesis approach was applied into the developed μPAD, giving semiquantitative measures in the physiologically relevant range. For uric acid and cholesterol determination, modified AuNPs were used to functionalize paper with a gold-on-paper approach with the optical properties changing based on different aggregation degrees and hydrophobic properties of particles dependent on analyte concentration. These paper-based assays show sensitivity ranges and limits of detection compatible for target analyte level determination and detection limits comparable to those of similar enzymatic, colorimetric systems, relying only on plasmonic transduction without the need for enzymatic activity or other chromogenic substrates. The resulting paper-based assays were integrated into a single 3D, multiplex paper-based device using paper microfluidics, showing the capability for performing different colorimetric assays with distinct requirements in terms of sample flow and sample uptake in test zones using a combination of both horizontal and vertical flows inside the same device. The presented device allows for multiparametric, colorimetric measures of different metabolite levels from a single complex sample matrix drop using digital color analysis, showing the potential for development of low-cost, low-complexity tools for diagnostics toward the point-of-care.
The appearance and quick spread of the new severe acute respiratory syndrome coronavirus disease, COVID-19, brought major societal challenges. Importantly, suitable medical diagnosis procedures and smooth clinical management of the disease are an emergent need, which must be anchored on novel diagnostic methods and devices. Novel molecular diagnostic tools relying on nucleic acid amplification testing have emerged globally and are the current gold standard in COVID-19 diagnosis. However, the need for widespread testing methodologies for fast, effective testing in multiple epidemiological scenarios remains a crucial step in the fight against the COVID-19 pandemic. Biosensors have previously shown the potential for cost-effective and accessible diagnostics, finding applications in settings where conventional, laboratorial techniques may not be readily employed. Paper- and cellulose-based biosensors can be particularly relevant in pandemic times, for the renewability, possibility of mass production with sustainable methodologies, and safe environmental disposal. In this review, paper-based devices and platforms targeting SARS-CoV-2 are showcased and discussed, as a means to achieve quick and low-cost PoC diagnosis, including detection methodologies for viral genomic material, viral antigen detection, and serological antibody testing. Devices targeting inflammatory markers relevant for COVID-19 are also discussed, as fast, reliable bedside diagnostic tools for patient treatment and follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.