We present CCSD(T) interaction energies and the bonding analysis for complexes of Cu, Ag, and Au with the lone-pair ligands H2O, OF2, OMe2, NH3, NF3, NMe3, H2S, SF2, SMe2, PH3, PF3, PCl3, and PMe3 (ML complexes). Both electron correlation and relativistic effects are crucial in the bonding of all complexes. AuPH3, AuPF3, and AuPCl3 (AuPX3) complexes exhibit particularly large relativistic effects, 30-46 kJ/mol. Upon neglecting relativistic effects, the Au-P bonds almost vanish aside from weak long-range van der Waals interactions. Highest binding energies are computed for complexes with Au, followed by Cu and Ag. For all coinage metals the strongest interactions are computed for PX3 ligands followed by SX2 and NX3 OX2 ligands. Upon methylation the interaction energy rises significantly. Metal-thiol complexes, particularly AuSCH3, form a separate class. Exceptional stability of gold complexes is due to large relativistic enhancement of the electron affinity of Au. Along with the electron affinity of a metal, we link the pattern of interaction energies in ML complexes with ionization potentials (IPs) of ligands. Strong interaction with P containing ligands is attributed to their lower IP and the lone pair → metal electron donation accompanied with the back-donation characteristic for P containing ligand. Energy data are accompanied with the natural bond orbital analysis. Computationally less demanding DFT computations with the PBE0 functional provide correct pattern of interaction energies when compared with benchmark CCSD(T) results.
We analyze the pattern of binding energies (BEs) of small Aun clusters (n = 1-7, 11) with lone-pair ligands (L = H2O, SH2, NH3, PH3, PF3, PCl3, and PMe3) employing the density functional theory. We use PBE0 functional with the dispersion correction and scalar relativistic effective core potential. This approach provides correct BEs when compared with benchmark CCSD(T) calculations for Au-L and Au2-L complexes. The pattern of BEs of Aun-L complexes is irregular with BE for Au3 ≈ Au4 > Au2 > Au7 > Au5 > Au11 > Au6 > Au1. Electron affinities (EAs) of Aun clusters exhibit oscillatory pattern with the cluster size. Binding energies of Aun-L complexes are oscillatory as well following EAs of Aun clusters. BEs of odd and even Aun-L complexes were analyzed separately. The bonding mechanism in odd Aun-L complexes is dominated by the lone pair → metal electron donation to the singly occupied valence Aun orbital accompanied by the back-donation. Even Aun clusters create covalent Aun-L bonds with BEs higher than those in odd Aun-L complexes. The BEs pattern and optimized geometries of Aun-L complexes correspond to the picture of creating the gold-ligand bond through the lone pair of a ligand interacting with the singly occupied molecular orbital in odd clusters or lowest unoccupied molecular orbital in even clusters of Aun. Ligands in both odd and even Aun-L complexes form three groups with binding energies that correlate with their ionization energies. The lowest BE is calculated for H2O as a ligand, followed by SH2 and NH3. PX3 ligands exhibit highest BEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.