BackgroundThe decision of when to stop septic shock resuscitation is a critical but yet a relatively unexplored aspect of care. This is especially relevant since the risks of over-resuscitation with fluid overload or inotropes have been highlighted in recent years. A recent guideline has proposed normalization of central venous oxygen saturation and/or lactate as therapeutic end-points, assuming that these variables are equivalent or interchangeable. However, since the physiological determinants of both are totally different, it is legitimate to challenge the rationale of this proposal. We designed this study to gain more insights into the most appropriate resuscitation goal from a dynamic point of view. Our objective was to compare the normalization rates of these and other potential perfusion-related targets in a cohort of septic shock survivors.MethodsWe designed a prospective, observational clinical study. One hundred and four septic shock patients with hyperlactatemia were included and followed until hospital discharge. The 84 hospital-survivors were kept for final analysis. A multimodal perfusion assessment was performed at baseline, 2, 6, and 24 h of ICU treatment.ResultsSome variables such as central venous oxygen saturation, central venous-arterial pCO2 gradient, and capillary refill time were already normal in more than 70% of survivors at 6 h. Lactate presented a much slower normalization rate decreasing significantly at 6 h compared to that of baseline (4.0 [3.0 to 4.9] vs. 2.7 [2.2 to 3.9] mmol/L; p < 0.01) but with only 52% of patients achieving normality at 24 h. Sublingual microcirculatory variables exhibited the slowest recovery rate with persistent derangements still present in almost 80% of patients at 24 h.ConclusionsPerfusion-related variables exhibit very different normalization rates in septic shock survivors, most of them exhibiting a biphasic response with an initial rapid improvement, followed by a much slower trend thereafter. This fact should be taken into account to determine the most appropriate criteria to stop resuscitation opportunely and avoid the risk of over-resuscitation.
A single session of HVHF as salvage therapy in the setting of a goal-directed hemodynamic management algorithm may be beneficial in severe refractory hyperdynamic septic-shock patients. This approach may improve hemodynamics and perfusion parameters, acid-base status, and ultimately hospital survival. Moreover, it is feasible, and safe.
IntroductionSeveral recent studies have shown that a positive fluid balance in critical illness is associated with worse outcome. We tested the effects of moderate vs. high-volume resuscitation strategies on mortality, systemic and regional blood flows, mitochondrial respiration, and organ function in two experimental sepsis models.Methods48 pigs were randomized to continuous endotoxin infusion, fecal peritonitis, and a control group (n = 16 each), and each group further to two different basal rates of volume supply for 24 hours [moderate-volume (10 ml/kg/h, Ringer's lactate, n = 8); high-volume (15 + 5 ml/kg/h, Ringer's lactate and hydroxyethyl starch (HES), n = 8)], both supplemented by additional volume boli, as guided by urinary output, filling pressures, and responses in stroke volume. Systemic and regional hemodynamics were measured and tissue specimens taken for mitochondrial function assessment and histological analysis.ResultsMortality in high-volume groups was 87% (peritonitis), 75% (endotoxemia), and 13% (controls). In moderate-volume groups mortality was 50% (peritonitis), 13% (endotoxemia) and 0% (controls). Both septic groups became hyperdynamic. While neither sepsis nor volume resuscitation strategy was associated with altered hepatic or muscle mitochondrial complex I- and II-dependent respiration, non-survivors had lower hepatic complex II-dependent respiratory control ratios (2.6 +/- 0.7, vs. 3.3 +/- 0.9 in survivors; P = 0.01). Histology revealed moderate damage in all organs, colloid plaques in lung tissue of high-volume groups, and severe kidney damage in endotoxin high-volume animals.ConclusionsHigh-volume resuscitation including HES in experimental peritonitis and endotoxemia increased mortality despite better initial hemodynamic stability. This suggests that the strategy of early fluid management influences outcome in sepsis. The high mortality was not associated with reduced mitochondrial complex I- or II-dependent muscle and hepatic respiration.
Dendritic cells (DC) are professional antigen presenting cells that represent an important link between innate and adaptive immunity. Danger signals such as toll-like receptor (TLR) agonists induce maturation of DC leading to a T-cell mediated adaptive immune response. In this study, we show that exogenous as well as endogenous inflammatory stimuli for TLR4 and TLR2 induce the expression of HIF-1α in human monocyte-derived DC under normoxic conditions. On the functional level, inhibition of HIF-1α using chetomin (CTM), YC-1 and digoxin lead to no consistent effect on MoDC maturation, or cytokine secretion despite having the common effect of blocking HIF-1α stabilization or activity through different mechanisms. Stabilization of HIF-1α protein by hypoxia or CoCl2 did not result in maturation of human DC. In addition, we could show that TLR stimulation resulted in an increase of HIF-1α controlled VEGF secretion. These results show that stimulation of human MoDC with exogenous as well as endogenous TLR agonists induces the expression of HIF-1α in a time-dependent manner. Hypoxia alone does not induce maturation of DC, but is able to augment maturation after TLR ligation. Current evidence suggests that different target genes may be affected by HIF-1α under normoxic conditions with physiological roles that differ from those induced by hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.