We report on the optical properties of single isolated silver nanodisks and pairs of disks fabricated by electron beam lithography. By systematically varying the disk size and surface separation and recording elastic scattering spectra in different polarization configurations, we found evidence for extremely strong interparticle interactions. The dipolar surface plasmon resonance for polarization parallel to the dimer axis exhibited a red shift as the interdimer separation was decreased; as expected from previous work, an extremely strong shift was observed. The scattering spectra of single particles and pairs separated by more than one particle radius can be well described by the coupled dipole approximation (CDA), where the particles are approximated as point dipoles using a modified dipole polarizability for oblate spheroids. For smaller particle separations (d < 20 nm), the simple dipole model severely underestimates the particle interaction, indicating the importance of multipolar fields and finite-size effects. The discrete dipole approximation (DDA), which is a finite-element method, describes the experimental results well even at d < 20 nm, including particles that have metallic bridges.
The effect of diffractive coupling on the collective plasmon line shape of linear arrays of Ag nanoparticles fabricated by electron beam lithography has been investigated using Rayleigh scattering spectroscopy. The array spectra exhibit an intricate multi-peak structure, including a narrow mode that gains strength for interparticle distances that are close to the single particle resonance wavelength. A version of the discrete dipole approximation method provides an excellent qualitative description of the observed behavior.
Supported phospholipid bilayers (SPBs) have emerged as important model systems for studies of the natural cell membrane and its components, which are essential for the integrity and function of cells in all living organisms, and also constitute common targets for therapeutic drugs and in disease diagnosis. However, the preferential occurrence of spontaneous SPB formation on silicon-based substrates, but not on bare noble-metal surfaces, has so far excluded the use of the localized surface plasmon resonance (LSPR) sensing principle for studies of lipid-membrane-mediated biorecognition reactions. This is because the LSPR phenomenon is associated with, and strongly confined to, the interfacial region of nanometric noble-metal particles. This problem has been overcome in this study by a self-assembly process utilizing localized rupture of phospholipid vesicles on silicon dioxide in the bottom of nanometric holes in a thin gold film. The hole-induced localization of the LSPR field to the voids of the holes is demonstrated to provide an extension of the LSPR sensing concept to studies of reactions confined exclusively to SPB-patches supported on SiO2. In particular, we emphasize the possibility of performing label-free studies of lipid-membrane-mediated reaction kinetics, including the compatibility of the assay with array-based reading (approximately 7 x 7 microm2) and detection of signals originating from bound protein in the zeptomole regime.
The optical response of isolated holes in 20 nm thin gold is probed as a function of alkanethiol CH(3)(CH2)x SH (x epsilon in 1-15) and protein adsorption using dark-field spectroscopy. We establish that the plasmon excitations of single and short-range ordered 60 nm holes exhibit similar E-field decay lengths delta approximately 10-20 nm and that a single hole can be used to resolve the successive adsorption of a protein (biotin-BSA) and its interaction partner (neutravidin). The data confirm the localized character of the hole plasmon and demonstrate that its applicability for bio/chemosensing is similar to that of particle plasmons.
The optical properties of single nanoholes in optically thin (t=20 nm) gold films on glass have been studied experimentally and theoretically. The measured elastic scattering spectra from the nanoholes exhibit a broad resonance in the red part of the visible spectrum, which is qualitatively similar to localized surface
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.