Electroluminescence efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters 1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene (2CzPN) and 3-(9,9dimethylacridin-10(9H)-yl)-9H-xanthen-9-one (ACRXTN) is investigated by considering intramolecular exciton relaxation processes. Electroluminescence efficiency roll-off at high current density is dramatically suppressed using ACRXTN as an emitter instead of 2CzPN because of suppressed bimolecular exciton annihilation processes such as singlet-triplet and triplet-triplet annihilation. The rate constant of reverse intersystem crossing from triplet to singlet excited states of ACRXTN is about 300 times higher than that of 2CzPN, decreasing triplet exciton density and suppressing exciton annihilation processes under optical and electrical excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.