Current methods of assessing psychopathology depend almost entirely on verbal report (clinical interview or questionnaire) of patients, their family, or caregivers. They lack systematic and efficient ways of incorporating behavioral observations that are strong indicators of psychological disorder, much of which may occur outside the awareness of either individual. We compared clinical diagnosis of major depression with automatically measured facial actions and vocal prosody in patients undergoing treatment for depression. Manual FACS coding, active appearance modeling (AAM) and pitch extraction were used to measure facial and vocal expression. Classifiers using leave-one-out validation were SVM for FACS and for AAM and logistic regression for voice. Both face and voice demonstrated moderate concurrent validity with depression. Accuracy in detecting depression was 88% for manual FACS and 79% for AAM. Accuracy for vocal prosody was 79%. These findings suggest the feasibility of automatic detection of depression, raise new issues in automated facial image analysis and machine learning, and have exciting implications for clinical theory and practice..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.