The preference and the development of electromobility are included among the priorities of transport policies in many European countries. This article deals with the issue of electric vehicle operation from the point of view of the environmental impact of electric power production, specifically the energy effectiveness of its production by utilizing primary power production sources. Differences in the effectiveness of the conversion of mixed forms of energy into electricity and their share in the process directly affect the final level of greenhouse gases (GHG) production, and thus the ecological footprint of electric vehicle operations. The specification of energy consumption and GHG production is based on the principles of the EN 16 258: 2012 standard, which considers legislative-regulated power plant effectiveness values, statistical values of GHG emissions from electricity production, and real energy consumption values of an electric vehicle fleet. The calculation takes into account the share of primary sources and the efficiency of electricity production and effectiveness of electricity distribution in each of the evaluated countries. The specific research study is performed by comparing measured parameters for individual countries chosen from the Central Europe region. The results of the study show that the quantification of the positive environmental consequences of increasing electromobility varies greatly in different countries, which means full-scale deployment of electromobility does necessarily deliver the sustainability of transport that was expected from it.
The paper describes the energy consumption and GHG production comparison of three transport modes-road, rail and waterborne. The calculations are done according to the legislation in force-standard EN 16 258:2012 Methodology for calculation and declaration of energy consumption and GHG emissions of transport services (freight and passengers). The results have high informative value because they take into account energy consumption and emissions from primary and secondary consideration. The calculation is done by real fuel consumption values (road and waterborne) and by simulation of energy consumption (railway). The energy and emission coefficients from the standard EN were used for estimating the results according to the well-to-wheels and tank-to-wheels principles.
AbstractThe influence of the cargo weight loaded on the vehicle and the total gross mass of the vehicle on the braking characteristics is often researched from the road safety reason. However, there is not enough knowledge about the influence of weight and load distribution on the loading area of small trucks or vans on their braking characteristics. This article presents the results of measurements of braking decelerations of the van of N1 category and the braking characteristics of a vehicle loaded with different cargo mass with different cargo locations on the loading area. The impact of the longitudinal cargo position on the loading area on the load of the individual axles and thus on the braking deceleration of the vehicle was investigated. The influence of the height of the center of gravity on the dynamic axle load during braking was also determined. Method of direct vehicle deceleration measurement was used by a decelerometer. There were calculated cargo weight and cargo position influences on the dynamic axle load during braking according to the vehicle deceleration.
Abstract:The paper presents a method for processing acoustic signals which allows the extraction, from a very noisy signal, of components which contain diagnostically useful information on the increased valve clearance of a combustion engine. This method used two-stage denoising of the acoustic signal performed by means of a discrete wavelet transform. Afterwards, based on the signal cleaned-up in this manner, its entropy was calculated as a quantitative measure of qualitative changes caused by the excessive clearance. The testing and processing of the actual acoustic signal of a combustion engine enabled clear extraction of components which contain information on the valve clearance being diagnosed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.