Background: The purpose of the present study was to evaluate, through videothermometry, the temperature variation in the hearts of rabbits, that underwent induced myocardial ischemia and reperfusion. Results: A total of 20 female rabbits were divided into two groups: a treated group and a sham group, the treatment group underwent 5 min of cardiac arrest and reperfusion, using the inflow occlusion technique. Throughout the experiment, the animals were monitored by videothermometry, observing the thermal variations of the myocardial tissue. During the experiment, at different times, blood gas tests and tests to evaluate the lactate concentrations were performed. At the end of the experiment, each heart was submitted to histopathological evaluation. In the treated group, there was a reduction in temperature of the myocardial tissue during the circulatory arrest compared to the sham group. Additionally, a colder area next to the caudal vena cava ostium and the right atrium was observed. Notably, despite the 5 min of cardiac arrest in the treated group, both the lactate and bicarbonate levels were maintained without significant variation. However, there was an increase in PaCO2 and pH reduction, featuring respiratory acidosis. In relation to the histopathological study, the presence of hydropic degeneration in the myocardium of animals in the treated group was observed. Conclusions: Based on these results, the videothermometry was efficient in identifying the range of myocardial tissue temperature, suggesting that the first areas to suffer due to cardiac arrest were the caudal vena cava ostium and the right atrium. However, in regard to the angiographic coronary thermography, the study was not feasible due to the small size of the coronary. There was no variation between the groups regarding the presence of myocardial infarction, myocardial congestion, myocardial edema and myocardial hemorrhage.
Background The purpose of the present study was to evaluate, through videothermometry, the temperature variation in the hearts of rabbits, that underwent induced myocardial ischemia and reperfusion. Results A total of 20 female rabbits, were divided into two groups: a treated group and a sham group. Throughout the experiment, the animals were monitored by videothermometry, observing the thermal variations of the myocardial tissue. During the experiment, at different times, blood gas tests and tests to evaluate the lactate concentrations were performed. At the end of the experiment, each heart was submitted to histopathological evaluation. In the treated group, there was a reduction in temperature of the myocardial tissue during the circulatory arrest compared to the sham group. Additionally, a colder area next to the caudal vena cava ostium and the right atrium was observed. Notably, despite the 5 minutes of cardiac arrest in the treated group, both the lactate and bicarbonate levels were maintained without significant variation. However, there was an increase in PaCO2 and pH reduction, featuring respiratory acidosis. In relation to the histopathological study, the presence of hydropic degeneration in the myocardium of animals in the treated group was observed. Conclusions Based on these results, the videothermometry was efficient in identifying the range of myocardial tissue temperature, suggesting that the first areas to suffer due to cardiac arrest were the caudal vena cava ostium and the right atrium. However, in regard to the angiographic coronary thermography, the study was not feasible due to the small size of the coronary. There was no variation between the groups regarding the presence of myocardial infarction, myocardial congestion, myocardial edema and myocardial hemorrhage.
Background: The purpose of the present study was to evaluate, through videothermometry, the temperature variation in the hearts of rabbits, that underwent induced myocardial ischemia and reperfusion. Results: A total of 20 female rabbits, were divided into two groups: a treated group and a sham group. Throughout the experiment, the animals were monitored by videothermometry, observing the thermal variations of the myocardial tissue. During the experiment, at different times, blood gas tests and tests to evaluate the lactate concentrations were performed. At the end of the experiment, each heart was submitted to histopathological evaluation. In the treated group, there was a reduction in temperature of the myocardial tissue during the circulatory arrest compared to the sham group. Additionally, a colder area next to the caudal vena cava ostium and the right atrium was observed. Notably, despite the 5 minutes of cardiac arrest in the treated group, both the lactate and bicarbonate levels were maintained without significant variation. However, there was an increase in PaCO2 and pH reduction, featuring respiratory acidosis. In relation to the histopathological study, the presence of hydropic degeneration in the myocardium of animals in the treated group was observed.Conclusions: Based on these results, the videothermometry was efficient in identifying the range of myocardial tissue temperature, suggesting that the first areas to suffer due to cardiac arrest were the caudal vena cava ostium and the right atrium. However, in regard to the angiographic coronary thermography, the study was not feasible due to the small size of the coronary. There was no variation between the groups regarding the presence of myocardial infarction, myocardial congestion, myocardial edema and myocardial hemorrhage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.