This paper settles the computational complexity of model checking of several extensions of the monadic second order (MSO) logic on two classes of graphs: graphs of bounded treewidth and graphs of bounded neighborhood diversity.A classical theorem of Courcelle states that any graph property definable in MSO is decidable in linear time on graphs of bounded treewidth. Algorithmic metatheorems like Courcelle's serve to generalize known positive results on various graph classes. We explore and extend three previously studied MSO extensions: global and local cardinality constraints (CardMSO and MSO-LCC) and optimizing the fair objective function (fairMSO).First, we show how these extensions of MSO relate to each other in their expressive power. Furthermore, we highlight a certain "linearity" of some of the newly introduced extensions which turns out to play an important role. Second, we provide parameterized algorithm for the aforementioned structural parameters. On the side of neighborhood diversity, we show that combining the linear variants of local and global cardinality constraints is possible while keeping the linear (FPT) runtime but removing linearity of either makes this impossible. Moreover, we provide a polynomial time (XP) algorithm for the most powerful of studied extensions, i.e. the combination of global and local constraints. Furthermore, we show a polynomial time (XP) algorithm on graphs of bounded treewidth for the same extension. In addition, we propose a general procedure of deriving XP algorithms on graphs on bounded treewidth via formulation as Constraint Satisfaction Problems (CSP). This shows an alternate approach as compared to standard dynamic programming formulations.1998 ACM Subject Classification: Theory of computation → Parameterized complexity and exact algorithms; Theory of computation → Logic; Theory of computation → Graph algorithms analysis.
Deletion problems are those where given a graph G and a graph property π, the goal is to find a subset of edges such that after its removal the graph G will satisfy the property π. Typically, we want to minimize the number of elements removed. In fair deletion problems we change the objective: we minimize the maximum number of deletions in a neighborhood of a single vertex. We study the parameterized complexity of fair deletion problems with respect to the structural parameters of the tree-width, the path-width, the size of a minimum feedback vertex set, the neighborhood diversity, and the size of minimum vertex cover of graph G. We prove the W[1]-hardness of the fair FO vertex-deletion problem with respect to the first three parameters combined. Moreover, we show that there is no algorithm for fair FO vertex-deletion problem running in time n o( 3 √ k) , where n is the size of the graph and k is the sum of the first three mentioned parameters, provided that the Exponential Time Hypothesis holds. On the other hand, we provide an FPT algorithm for the fair MSO edgedeletion problem parameterized by the size of minimum vertex cover and an FPT algorithm for the fair MSO vertex-deletion problem parameterized by the neighborhood diversity.
We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter.We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.