When exposed to temperatures that are progressively and rapidly raised, large dimension fibre cement boards tend to crack. This occurrence is analysed and explained for a specific issue of asymmetric growth of a curvilinear crack in high temperatures. This phenomenon occurred while performing Single Burning Item (SBI) experiments at fire loads which are higher than those used in countries of the European Union, which better reflect fire events that may occur in high-rise buildings. In such conditions, fibre cement boards crack, allowing the fire to reach the thermal insulating material which then combusts, thereby helping to spread the conflagration to upper floors. This experiment investigated the temperatures at which fibre cement boards crack, and why. Thermal analysis methods and thermogravimetric experiments were conducted on the fibre boards, followed by x-ray phase analysis investigations. During this phase, x-ray structural analysis was performed while the fibre cement was exposed to temperatures of 1000 °C. The article also presents ongoing change results when heating only composite fibre-cement board materials; phase changes that take place in high temperatures are discussed.
An investigation was conducted on the influence that industrial metakaolin waste (IMW) has on the properties of autoclaved fiber cement composition (FCC) samples. FCC samples were made from fiber cement plate’s typical components using the same proportions. In samples, IMW was used instead of cement in 10%, 20%, 30% proportions and in 50%, 100% proportions instead of ground quartz. Differential thermal analysis (DTG), thermogravimetric analysis (TGA), ultrasound pulse velocity (UPV), density, porosity and optical microscope (OM) research methods were used to identify the micro and macrostructure of samples. Mechanical properties were evaluated using flexural and compressive strength research methods. It was established that IMW was used instead of cement in fiber cement composition samples up to 10% and in fiber cement composition samples instead of ground quartz forms density microstructure structure because of Al-rich tobermorite. As a result, the flexural and compressive strength increased. Samples with higher content of IMW instead of cement had unreacted IMW and a less dense microstructure. In this case, flexural and compressive strength decreased. All FCC samples were fired in a standard fire curve (ISO 842) for 30 min. Samples of mechanical properties were established by doing flexural and compressive strength tests, and which results showed the same trends.
In case of a fire, the flame can spread from the building through the outer openings to the outside. In such cases, the fire temperature thermal effect determines the façade fibrocement tile thermal destruction, while the flammable thermo-insulating systems used for building energy effectiveness ensures it sets on fire. The spread of such a fire becomes uncontrollable and raises an immediate danger to the people inside the building, while such event dynamics delay and make it harder to put out the fire. Extra additive usage in façade fibrocement tiles can raise its resistance to fire temperature effect. Carbon fiber is widely known as a material resistant to the high temperature destructive effect. An investigation was conducted on the influence that carbon fiber has on the properties of autoclaved fiber cement samples. The autoclaved fiber cement samples were made from the raw materials, typical for façade fiber cement plates, produced in an industrial way (using the same proportions). In the samples, carbon fiber was used instead of mix cellulose fiber in 0.5%, 0.75%, 1% proportions. After completing the density research, it was determined that the carbon fiber effect had no general effect on the sample density. Ultrasound speed spreading research showed that the carbon fiber insignificantly makes sample structure denser; however, after the fire temperature effect, sample structure is less dense when using carbon fiber. The results of both these investigations could be within the margin of error. Insignificant sample structure density rise was confirmed with water absorption research, which during the 1% carbon fiber usage case was lower by 4.3%. It was found that up to 1% carbon fiber usage instead of mix cellulose fiber creates a dense structure of autoclaved fiber cement samples, and the carbon fiber in the microstructure influences the mechanical properties of the autoclaved fiber cement samples. After using carbon fiber in ambient temperature, the sample compressive strength and bending strength increased. However, the results of mechanical properties were completely different after experiencing fire temperature effect. Scanning electron microscopy research showed that the bond between the carbon fiber and the cement matrix was not resistant to high temperature effect, due to which the structure of the samples with carbon fiber weakened. Research showed that carbon fiber lowers the mechanical properties of the autoclaved fiber cement samples after high temperature effect. After analyzing the density, ultrasound speed spreading, water absorption, microstructure and macrostructure, compressive strength, and bending strength, the authors determined the main CF usage for AFK dependencies: 1. CF usage up to 1% replacing MCF makes the AFK structure more dense up to 1.5%, and lowers the water absorption up to 4.3%; 2. CF incorporates itself densely into the AFC microstructure; 3. CF usage up to replacing MCF improves the AFK strength properties up to until the fire temperature effect. Compression strength increases up 7.3% while bending strength increases up to 14.9%. 4. AFK hydrate amount on CF surface is lower than on MCF; 5. Fire temperature effect on AFK with CF causes dehydration by removing water vapor from the microstructure, resulting in a lot of microcracks due to stress; 6. The CF and cement matrix contact zone is not resistant to fire temperature effect. SEM experiments were used to determine the CF “self-removing” effect; 7. Due to complex changes happening in the AFK during fire temperature effect, CF usage does not improve strength properties in the microstructure. Compression strength decreases to 66.7% while bending strength decreases to 20% when compared with E samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.