An experimental longwave system operating in the broadcasting spectrum with horizontal magnetic loop transmitting antennas is presented as an element of simulated lunar astronaut mission of the IGLUNA program of Swiss Space Center (ESA_Lab demonstrator) in June 2019 on the Klein Matterhorn glacier in Switzerland. The parameters of the antennas, the environment, the transmitter design, and propagation tests are presented. The best-suited propagation model is developed. As the system, using low powers, provided coverage of maximal distance of 2077.06 km, a single radio station of this type would cover about 36% of the Moon’s surface and allow in situ ground-penetrating research.
Long linear antennas for very low frequency radio transmissions, supported by aerostats, unanchored, and raised to high altitudes, present themselves as slow-moving, highly conductive disturbances in cloud layers, acquiring an electrical charge and being subjected to intense coronae. High electric field strength values around those objects increase the risk of lightning strikes, which could be disastrous to the mechanical structures of the balloon mission (both the antenna and the balloon) and the radio transmitter. This paper aims to investigate the inception of lightning strikes over two essential elements of such missions: a talc-covered latex (balloon material) and the model of the linear antenna, made of different materials. Based on the high-voltage experiments with the recorded electrical discharges, the properties, functions, and possible ameliorations of the talc cover are presented, as well as the basic characteristics of lightning forms around the very long antenna system, with a proposition of design requirements and constraints reflecting the safety of the balloon missions employing a VLF antenna from lightning strikes.
This article presents an analysis of measurements collected during a six-month-long experimental deployment of a surface-placed horizontal magnetic loop antenna. The changes in the measured parameters of the loop are investigated in relation to the surrounding environment’s composition, temperature and water content. Basic functions describing these changes are formulated. The results are confronted with outcomes from similar experiments from previous years and different locations, showing good compliance. The developed functions and antenna system can be used for environmental monitoring of soil composition and humidity over large areas and volumes, helpful in, for example, flood awareness.
Long-wire very low frequency antennas, when lifted up on high altitudes by an aerostat, move through different atmospheric layers and interact with them electrically in a more intense way in comparison with aircraft flights. Such interactions manifest themselves in the form of electrical changes in the clouds and corona discharges excited on the antenna wire, which may increase the risk of mechanical damages and transmitter overload. In order to investigate the interactions between the different types of clouds and a long balloon-borne antenna wire, two theoretical models were developed and compared with results from an experimental balloon flight directly through a storm front. Based on the theoretical and experimental results, the most accurate model proposed was chosen, as well as a set of basic requirements for the balloon-borne VLF antenna system, reducing the risk of failure during operation in highly electrically active atmospheric environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.